Physics Opportunities at a Muon Collider

Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 mcdonald@puphep.princeton.edu, http://puhep1.princeton.edu/mumu/

The case for a future high-energy collider based on muon beams is briefly reviewed.

I. I WANT TO BELIEVE...

- That elementary particle physics will prosper for a 2nd century with laboratory experiments based on innovative particle sources.
- That a full range of new phenomena will be investigated:
 - mass \Rightarrow a 2nd 3 × 3 (or larger?) mixing matrix.
 - Precision studies of Higgs bosons.
 - A rich supersymmetric sector.
 - ... And more ...
- That our investment in future accelerators will result in more cost-effective technology, capable of extension to 10's of TeV of constituent CoM energy.
- That a Muon Collider [1,2] based on ionization cooling is the best option to accomplish the above.

II. IONIZATION COOLING

(An Idea So Simple It Might Just Work)

- Ionization: takes momentum away.
- RF acceleration: puts momentum back along z axis.
- \Rightarrow Transverse "cooling".

Particles are accelerated longitudinally

Origin: G.K. O'Neill (1956) [3].

- This won't work for electrons or protons.
- So use muons: Balbekov [4], Budker [5], Skrinsky [6], late 1960's.

III. THE DETAILS ARE DELICATE

Use channel of LH_2 absorbers, rf cavities and alternating solenoids (to avoid buildup of angular momentum). One cell of the cooling channel:

But, the energy spread rises due to "straggling".

 \Rightarrow Must exchange longitudinal and transverse emittance frequently to avoid beam loss due to bunch spreading. Can reduce energy spread by a wedge absorber at a momentum dispersion point:

[6-D emittance constant (at best) in this process.]

IV. WHAT IS A MUON COLLIDER?

An accelerator complex in which

- Muons (both μ^+ and μ^-) are collected from pion decay following a pN interaction.
- Muon phase volume is reduced by 10⁶ by ionization cooling.
- The cooled muons are accelerated and then stored in a ring.
- $\mu^+\mu^-$ collisions are observed over the useful muon life of ≈ 1000 turns at any energy.
- Intense neutrino beams and spallation neutron beams are available as byproducts.

Muons decay: $\mu \to e\nu \quad \Rightarrow$

- Must cool muons quickly (stochastic cooling won't do).
- Detector backgrounds at LHC level.
- Potential personnel hazard from ν interactions.

TABLE I. B	aseline parameters for high-	and low-energy muon	n colliders.	Higgs/year	assumes a cross	section σ	$T = 5 \times 10^4$	$^{\mathrm{fb}}$
a Higgs width .	$= 2.7 \text{ MeV}; 1 \text{ year} = 10^7 \text{ s}$	3.						

00) 5							
CoM energy	TeV	3	0.4	0.1				
p energy	${\rm GeV}$	16	16	16				
p's/bunch		2.5×10^{13}	$2.5 imes 10^{13}$		5×10^{13}			
Bunches/fill		4	4		2			
Rep. rate	Hz	15	15	15				
p power	MW	4	4	4				
μ /bunch		2×10^{12}	2×10^{12}	$4 imes 10^{12}$				
μ power	MW	28	4	1				
Wall power	MW	204	120	81				
Collider circum.	m	6000	1000	350				
Ave bending field	Т	5.2	4.7	3				
Depth	m	500	100		10			
Rms $\Delta P/P$	%	0.16	0.14	0.12	0.01	0.003		
6d ϵ_6	$(\pi m)^3$	1.7×10^{-10}						
Rms ϵ_n	π mm-mrad	50	50	85	195	290		
β^*	cm	0.3	2.6	4.1	9.4	14.1		
σ_z	cm	0.3	2.6	4.1	9.4	14.1		
σ_r spot	$\mu\mathrm{m}$	3.2	26	86	196	294		
σ_{θ} IP	mrad	1.1	1.0	2.1	2.1	2.1		
Tune shift		0.044	0.044	0.051	0.022	0.015		
$n_{\rm turns}$ (effective)		785	700	450	450	450		
Luminosity	${\rm cm}^{-2}{\rm s}^{-1}$	7×10^{34}	10^{33}	1.2×10^{32}	2.2×10^{31}	10^{31}		
Higgs/year				$1.9 imes 10^3$	$4 imes 10^3$	$3.9 imes 10^3$		

Comparison of footprints of various future colliders:

V. THE CASE FOR A MUON COLLIDER

- More affordable than an e^+e^- collider at the TeV (LHC) scale.
- More affordable than either a hadron or an e^+e^- collider for (effective) energies beyond the LHC.
- Precision initial state superior even to e^+e^- .

Muon polarization $\approx 25\%$, \Rightarrow can determine E_{beam} to 10^{-5} via $g \Leftrightarrow 2$ spin precession [7].

 $t\overline{t}$ threshold:

Nearly degenerate A^0 and H^0 :

- Initial machine could produce light Higgs via s-channel [8]:
 - Higgs coupling to μ is $(m_{\mu}/m_e)^2 \approx 40,000 \times$ that to e.
 - Beam energy resolution at a muon collider $< 10^{-5}$,

 \Rightarrow Measure Higgs width.

Add rings to 3 TeV later.

• Neutrino beams from μ decay about 10⁴ hotter than present. Possible initial scenario in a low-energy muon storage ring [9].

Study *CP* violation via *CP* conjugate initial states: $\begin{cases} \mu^+ \to e^+ \overline{\nu}_{\mu} \nu_e \\ \mu^- \to e^- \nu_{\mu} \overline{\nu}_e \end{cases}.$

VI. FUTURE FRONTIER FACILITIES

(A Personal Assessment)

- Hadron collider (LHC, SSC): ≈ \$100k/m [magnets].
 ≈ 2 km per TeV of CM energy.
 Ex: LHC has 14-TeV CM energy, 27 km ring, ≈ \$3B.
- Linear e⁺e⁻ collider (SLAC, NLC(?)): ≈ \$200k/m [rf].
 ≈ 20 km per TeV of CM energy; But a lepton collider needs only ≈ 1/10 the CM energy to have equivalent physics reach to a hadron collider. Ex: NLC, 1.5-TeV CM energy, 30 km long, ≈ \$6B (?).
- Muon collider: \approx \$1B for source/cooler + \$100k/m for rings
 - Well-defined leptonic initial state.

 $m_{\mu}/m_e \approx 200 \Rightarrow$ Little beam radiation.

- \Rightarrow Can use storage rings.
- \Rightarrow Smaller footprint.

Technology: closer to hadron colliders.

 \approx 6 km of ring per TeV of CM energy.

Ex: 3-TeV muon collider, \approx \$3B (?), would have physics reach well beyond the LHC.

VII. MUON COLLIDER R&D PROGRAM

• Targetry and Capture at a Muon Collider Source [10,11]. Baseline scenario:

To achieve useful physics luminosity, a muon collider must produce about $10^{14} \ \mu/\text{sec}$.

- $\Rightarrow > 10^{15} \text{ proton/sec}$ onto a high-Z target \Leftrightarrow 4 MW beam power.
- Capture pions of $P_{\perp} \lesssim 200 \text{ MeV}/c$ in a 20-T solenoid magnet.
- Transfer the pions into a 1.25-T-solenoid decay channel.
- Compress π/μ bunch energy with rf cavities and deliver to muon cooling channel.

• Ionization Cooling for a High Luminosity Muon Collider [12,13].

Test basic cooling components:

- Alternating solenoid lattice, RF cavities, LH_2 absorber.
- Lithium lens (for final cooling).
- Dispersion + wedge absorbers to exchange longitudinal and transverse phase space.

Track individual muons; simulate a bunch in software.

Possible site: Meson Lab at Fermilab:

VIII. UPCOMING WORKSHOPS

 $({\it See http://www.cap.bnl.gov/mumu/table_workshop.html})$

- Muon Collider Collaboration Meeting, May 20-26, 1999, St. Croix.
- Neutrino Factories Based on Muon Accumulators, July 5-9, 1999, Lyon/CERN.
- Muon Colliders at the Highest Energies, Sept. 27-Oct. 1, 1999, Montauk, NY.
- Physics Potential and Development of $\mu^+\mu^-$ Colliders, Dec. 14-19, 1999, San Francisco.
- C.M. Ankenbrandt et al., Status of Muon Collider Research and Development and Future Plans, submitted to Phys. Rev. Sp. Top. - Acc. Beams; http://xxx.lanl.gov/abs/ps/physics/9901022
- [2] Muon Collider Collaboration web page: http://www.cap.bnl.gov/mumu/mu_home_page.html
- G.K. O'Neill, Storage-Ring Synchrotron: Device for High-Energy Physics Research, Phys. Rev. 102, 1418 (1956); http://puhep1.princeton.edu/mumu/physics/oneill/1.html
- [4] Yu.M. Ado and V.I. Balbekov, Use of Ionization Friction in the Storage of Heavy Particles, Sov. Atomic Energy 31, 731 (1971); http://puhep1.princeton.edu/mumu/physics/ado/1.html
- [5] G.I. Budker, Accelerators and Colliding Beams (in Russian), in Proc. 7th Int. Conf. on High Energy Accel. (Yerevan, 1969), p. 33; extract: AIP Conf. Proc. 352, 4 (1996); Int. High Energy Conf. (Kiev, 1970), unpublished; extract: AIP Conf. Proc. 352, 4 (1996).
- [6] A.N. Skrinsky, Intersecting Storage Rings at Novosibirsk, Proc. Int. Seminar on Prospects of High-Energy Physics (Morges, Mar. 1971), unpublished; extract: AIP Conf. Proc. 352, 6 (1996).
- [7] R. Raja and A. Tollestrup, Calibrating the energy of a 50 × 50 GeV Muon Collider using g 2 spin precession, Phys. Rev. D 58, 013005 (1998); http://xxx.lanl.gov/ps/hep-ex/9801004
- [8] S. Geer and R. Raja (eds.), Workshop on Physics at the First Muon Collider and at the Front End of the Muon Collider, (Fermilab, Nov. 1997), AIP Conf. Proc. 435 (1998); http://www.fnal.gov/projects/muon_collider/physics/talks.html
 [9] http://ciacumur.gov/files/talks.html
- [9] http://nicewww.cern.ch/~autin/MuonsAtCERN/Neutrino.htm
- [10] J. Alessi et al., An R&D Program for Targetry at a Muon Collider, proposal to the BNL AGS (Sept. 1998); http://puhep1.princeton.edu/mumu/target/targetprop.ps
- [11] Targetry web page: http://puhep1.princeton.edu/mumu/target/
- [12] C. N. Ankenbrandt et al., Ionization Cooling Research and Development Program for a High Luminosity Muon Collider, Fnal-P904 (April 15, 1998); http://www.fnal.gov/projects/muon_collider/
- [13] Cooling R&D web page: http://www.fnal.gov/projects/muon_collider/cool/cool.html