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A quantumwave packet treatment of neutrino and neutral K and B meson oscillations is presented
which incorporates the recoil particle in the production process, and includes the e�ect of the
localization and lifetime of the source assumed to be a resonance or unstable particle. This approach
removes the ambiguities in the conventional single particle treatment of these oscillations, and
elucidates the role of quantum correlations with the recoil particle. A fundamental connection
between the stochastic decay time of the source and the space-time coordinates of the correlated
�nal state particles is derived.

A proper description of neutral K and B meson oscillations [1] [2] and neutrino oscillations [3]- [5] requires that the
familiar superposition of states with de�nite mass be represented by coherent wave packets [6] - [10]. However, the
conventional single particle treatment of these oscillations leads to ambiguities which have lead to debates whether the
momentum [6] - [8] or the energy [11] - [14] remains unchanged for di�erent mass eigenstates, although the resultant
transition probabilities are the same in both cases. Furthermore, such descriptions leave unanswered the fundamental
question how the properties of a single particle wave packet are determined by the nature of the production process.
In this talk these problems are resolved by considering an entangled wave packet which includes a recoil particle
produced by the decay of a resonance or unstable particle, and incorporates both energy and momentum conservation
[15] - [18] instead of resorting to conventional ad-hoc assumptions [19]. Our results are similar to those obtained by
Dolgov et. al [18] who considered, however, the limiting case that the width of the resonance vanishes. Including
�nal state correlations raises some interesting new questions because these correlations take place between space-like
separated events, a subtle problem in quantum mechanics discussed a long time ago by Einstein, Podolsky and Rosen
(EPR) [20], and considered more recently in connection with the production of a neutral K �K or B �B pair in [21] -
[23]. In this case oscillations can be observed as EPR correlations between neutral mesons of �xed 
avor or their
decay products. It has been claimed in [24] - [27] that oscillations of the recoil particle can also be observed even if
this particle has a �xed mass. In the case of neutrinos produced in the decay � ! �+ � where the recoil is a charged
lepton, this would greatly facilitate experiments. However, Lowe et al. [28]- [29] have argued that only a certain
traveling pattern of oscillations in the recoil particle coordinates is observable, while Dolgov et al. [18] concluded that
such oscillations could be observed only as EPR correlations provided that the detection of the recoil lepton is related
to a neutrino of �xed 
avor.
An important feature in our approach is that a correlated wave packet can incorporate the e�ect of both localization

and �nite lifetime of the source, which is assumed here to be a resonance or unstable particle. It will be shown that
these properties explain why the propagation of the particles is con�ned near classical trajectories. While it has been
recognized that classical motion must be combined with wave properties and interference e�ects for an understanding
of the oscillation phenomena, in current discussions classical trajectories have not been introduced in a self-consistent
manner [18], [24] - [29]. A novel property of our wave packet is that it can incorporate the space-time coordinates of
the decay point of the initial unstable state which can be observed and provides the appropriate reference point for
the oscillations.
For simplicity we consider the theory in one dimension where all the processes are collinear, and assume there are

only two mass eigenstates ja > and jb > which is adequate for our purposes. Then the transition amplitude to some
�nal state jg > is given by

A / cos(�) < gja >  a + sin(�) < gjb >  b (1)

where � is the mixing angle for an initial state of de�nite 
avor or strangeness, and  a and  b are wavefunctions
associated with the di�erent mass eigenstates. We obtain these wavefunctions by time-dependent perturbation theory,
assuming that the initial state is a resonance or unstable state of mass M and width �. The wavefunction for this
state for t � ts is

 o(x; t) =

Z
dpf(p)exp[ip(x� xs)� (iEp +M�=2Ep)(t� ts)] (2)
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where ts is the time at which this state is created as a wave packet centered at xs, f(p) is the amplitude associated

with a momentum distribution p in the initial state with corresponding energy Ep =
p
p2 +M2. In the following

discussion we set for convenience xs; ts at the origin of our space-time coordinate system , but it should be remembered
that in practice these coordinates are not known precisely. We assume that this amplitude has a sharp maximum at
p = �p, and expanding Ep to �rst order in p� �p we obtain

 o(x; t) = exp[i(�px�E�pt)] exp(�M�t=2E�p) g(x� �vt) (3)

where the envelope of the wave packet is given directly by the wavefunction of the source at t = 0

g(x) = exp(�i�px) (x; 0) (4)

In the Wigner-Weisskopf approximation we obtain for t � 0

 a;b(x1; x2; t) = N

Z
dp1

Z
dp2f(p)

exp(ip1x1 + ip2x2 � i(E1 +E2)t)

(E1 +E2 �Ep + iM�=2Ep)
(5)

where N = (1=2�)
p
�M j�v12j=E�p, �v12 is the mean relative velocity, and E1 =

p
p2
1
+m2

1
and E2 =

p
p2
2
+m2

2
are the

relativistic energies of the two correlated particles in the �nal state with masses m1 and m2 which can have di�erent
values for the eigenstates labeled a an b. Conservation of total momentum in the production process implies that

p = p1 + p2; (6)

A shortcoming of this representation for  is that the state of both particles is given at the same time t, while in
practice these particles can be detected at di�erent times t1 and t2. However, since these particles are not interacting,
the subsequent time evolution of the wavefunction can be determined by their respective free particle Hamiltonians
H1 and H2. Hence

 (x1; x2; t1; t2) = exp(�iH1(t1 � t)� iH2(t2 � t)) (x1; x2; t); (7)

and the required wavefunction  (x1; x2; t1; t2) (footnote 1) is obtained by replacing the factor (E1 +E2)t in Eq. 5 by
E1t1 + E2t2. If these particles are unstable, as is the case for neutral kaons, an additional factor in the integrand of
Eq. 5 is required, of the form

exp� (
m1t1
2�1E1

+
m2t2
2�2E2

); (8)

where �1 and �2 are the particle lifetimes. The assumption that the initial state is a resonance or unstable particle of
width � implies that the total energy E = E1 + E2 of the �nal particle is not �xed. Indeed, in our formulation the
decay width plays an essential role in con�ning these particles to propagate near classical trajectories. Nevertheless,
we can de�ne mean momenta �p1 and �p2 associated with the mean total momentum �p by the requirement that for
these special values of momenta, the energy conservation relation

E�p = �E1 + �E2: (9)

is satis�ed exactly.
We carry out the integrations in Eq. 5 approximately, by expanding the momenta p1 and p2 around these mean

values �p1 and �p2, obtained as solutions of the momentum- energy conservation equations, Eqs. 6 and 9 to �rst order
in p� �p and E �E�p, where E = E1 +E2. Second order terms contribute to the dispersion of the wave packet which
we neglect here. Changing the coordinates in the integrand of Eq. 5 to the variables p and E, we obtain for t12 > 0

 (x1; x2; t1; t2) = N 0exp[i�12] exp(�M�t12=2E�p)g(z12); (10)

where N 0 = �i
p
�M=E�p�v12 is a constant, and

�12 = �p1x1 + �p2x2 � �E1t1 � �E2t2; (11)

t12 = (�x2 ��x1)=�v12; (12)

z12 = ( �E1�x1 + �E2�x2)=E�p; (13)

2



where �xi = xi � �viti for i = 1; 2. For t1 = t2 = t we have t12 = t � (x1 � x2)=�v12 and z12 = x � �vt, where
x = ( �E1x1 + �E2x2)=E�p is the center of mass of the two �nal state particles. Hence the variable z12 corresponds to
the deviation of the center of mass from classical motion, and t12 = td corresponds to the stochastic time td at which
the particle pair is created at x1 = x2 = xd, where �12 = �pxd � E�ptd and z12 = xd � �vtd. At such a point the �nal
state wavefunction is proportional to the initial wavefunction at x = xd; t = td, and it is independent of the mass of
the decay particles. Consequently our wave packet, Eq. 10, satis�es the initial condition that the 
avor of the state
be independent of xd; td, an important result could not be imposed ab initio. For t < t12, this wave packet vanishes
as expected from our interpretation that t12 = td.
In our approximation, the initial wavefunction, Eq. 2, determines directly the envelope g(z12) of the wave packet

of the two �nal state particles, and the probability for �nding these particles at x1; t1 and x2; t2 is given by

�M

E�p�v12
g2(z12) exp(��Mt12=E�p)dx1dx2 (14)

It can be readily veri�ed that the probability for the creation of these two particles at xd; td is equal to the probability
that the source decays at this same space-time point during an interval of time dt=� . If this decay is not measured or
constrained by the environment, then Eq. 14 can be applied directly to calculate probabilities or averages over the
recoil variable coordinates. However if td is observed, then for times t1 � td and t2 � td the probability for �nding
the particles at x1; x2 is obtained by setting t12 = td in Eq. 14 (footnote 2), and x1�x2 = �v1(t1� td)� �v2(t2� td), or

�dx1 = �dx2 = z12 (15)

where �dxi = xi � �vtd � �vi(ti � td) is the deviation from classical motion of the decay particles. In this case, the
measure z12 for this deviation satis�es he same distribution as the deviation from classical motion of the initial state,
and therefore our analysis shows that particles associated with the decay process are con�ned to move along classical
trajectories with the same degree of localization as the source.
We now assume that the two states labeled a and b correspond to particles 1 and 2 with small mass di�erences,

�m2

i = m2

ia �m2

ib, and calculate the corresponding di�erences in the mean momentum �p1 and �p2 and corresponding
energies �E1 and �E2 from the energy-momentum conservation laws, Eqs. 6 and 9. We have

��p1 + ��p2 = 0; (16)

and

� �E1 + � �E2 = 0; (17)

where to �rst order in �m2

i ,

� �Ei = �vi��pi +
�m2

i

2 �Ei

: (18)

Solving these equations we obtain

��p1 = ���p2 = �
1

�v12
(
�m2

1

2 �E1

+
�m2

2

2 �E2

): (19)

where �v12 = �v1��v2 is the relative velocity. These relations di�er from the result obtained with conventional kinematics
assumptions that di�erent mass states have either the same momentum [6] - [8] or the same energy [11] - [14].
The oscillation term which concerns us here appears in the calculation of the interference term in the transition

probability jAj2, where A is given by Eq. 1, and is proportional to

Real �a b = cos(�)g(z12;a)g(z12;b)exp(�M�(t12;a + t12;b)=2E�p) (20)

where we have ignored factors which depend on the lifetime of the �nal state particles, Eq. 8. The phase di�erence
� = �12;a � �12;b = ��p1x1 + ��p2x2 � � �E1t1 � � �E2t2 is invariant under Lorentz transformations, and according to the
energy-momentum conservation laws, Eqs. 16 and 17, it can be written in the form

� = ��p1(x1 � x2)� � �E1(t1 � t2): (21)

This form shows that the phase di�erence � depends only on the relative coordinates of the �nal state particles and,
therefore, that it is independent of the initial decay coordinates xd; td. However the role of this decay coordinates
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appears when we consider the e�ect of the wave packet envelope in the case that these coordinates are measured,
constraining each of the decay particles to move near its classical trajectories. For this purpose we apply Eq. 18 to
write � in the equivalent form

� = ��p1(�x1 ��x2)�
�m2

1

2 �E1

t1 �
�m2

2

2 �E2

t2; (22)

This expression for � is similar to results given in [18] and [29], but our correlated wave packet now allows us to
interpret and evaluate properly the contribution of the �rst term in � which does not appear in the convential single
particle formulation for this phase. Substituting Eq. 19 for ��p1 and substituting �x2 ��x1 = �v12t12, we obtain

� = �
�m2

1

2 �E1

(t1 � t12)�
�m2

2

2 �E2

(t2 � t12); (23)

If the recoil particle has a �xed mass, i.e. �m2
2
= 0, this form for � is equal to the conventional single particle

result with mass eigenstates of the same momentum provided that we identify t12 with the decay time td of the
initial state as we have done previously, see footnote 2. In this case this phase is independent of the recoil particle
coordinates contrary to assertions in [24]- [27]. However, if the decay time td is not measured directly, then in principle
it could be determined from a coincidence measurement of the recoil coordinate x2. If we set t1 = t2, and substitute
t1 � t12 = (x1 � x2)=�v12 in Eq. 23, we obtain EPR-like oscillations in the relative coordinates of the two �nal state
particles which can only be observed if the 
avor is also determined [18]. In the case of neutral meson pairs in the
�nal state, e. g. K �K produced in � decay, �m2

2
= ��m2

1
, and the time coordinates of both particles appear in Eq.

23 even if the decay time td has been determined. A similar result was obtained in [22] and [23] by assuming that
��p1 = ��p2 = 0, although this kinematical condition is not justi�ed.
If neither the decay time td nor the coordinates x2; t2 of the recoil particle are observed, we must integrate the

interference term of the transition probability, Eq. 20 over the unobserved coordinates. Assuming that there are no
constraints on the possible range of these variables, we apply eq. 14 to obtain the average of cos(�). Neglecting the
mass di�erence in the envelopes of the wave packet, which leads to a �nite coherence length, we obtain

< cos(�) >= R cos (
�m2

1

2 �E1

(t1 � ts) +
�m2

2

2 �E2

(t2 � ts)� �); (24)

where

R =
1p

1 + �2
; (25)

tan( �) = �; (26)

and

� = (
�m2

1

2 �E1

+
�m2

2

2 �E2

)(
�Ep

M�
): (27)

This average is independent of the shape of the initial wave packet. The parameter � gives a measure for the deviation
from the conventional form, which corresponds to R = 1 and � = 0 in Eq. 24. For example, in particle reactions
producing neutral mesons, � is of order several MeV, and for the B meson �m is 3:1� 10�4eV , and about 100 times
smaller for the K meson. Hence � is of order 10�10 � 10�12, and the contribution from the �rst term which appears
in Eq. 22 is essentially unobservable, contrary to expectations in [29]. For neutrinos produced in pion decay, with
�m2 � 10�3eV 2 as found in [5], � � 10�3 can also be neglected in the analysis of the data. However, this is not the
case for �m2 of order 1� 10 eV 2 as reported in [4]. Furthermore, the magnitude of � is greater for the case that the
neutrinos are produced in muon decay [3] because the muon is lighter than the pion and has a longer life time, but
this is a three body decay and our analysis is only approximately valid in this case.
In practice it must be remembered that oscillations are observed in position rather than in time coordinates. Setting

ti = (xi ��xi)=�vi in Eq. 23 for the phase we obtain an equivalent form

� = (
�m2

1

2p1
+
�m2

2

2p2
)z12 �

�m2
1

2�p1
(x1 � �vt12)�

�m2
2

2�p2
(x2 � �vt12): (28)
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This di�ers from the conventional form for � even if the decay coordinates are determined. Then t12 = td, but the
variable z12 = �dx1 = �dx2, Eq. 15, which appears in the �rst term of Eq. 28 does not vanish. Notice that in the
rest frame of the source �v = 0, and the dependence of the phase on t12 vanishes because the source is not moving.
Assuming a Gaussian distribution for the initial wave packet with a width �x, and averaging cos(�) over z12 and t12
we now obtain

< cos(�) >= �R cos (
�m2

1

2�p1
(x1 � xs) +

�m2
2

2�p2
(x2 � xs)� ��); (29)

where

�R =
exp(��2)p

1 + ��2
; (30)

tan( ��) = ��; (31)

�� = (
�m2

1

2�p1
+
�m2

2

2�p2
)(

�p

M�
); (32)

and

�� = (
�m2

1

2�p1
+
�m2

2

2�p2
)�x: (33)

As expected from simple physical arguments, interference e�ects can occur in position measurements provided that
the width �x of the wave packet is small compared to the oscillation length / �pi=�m

2

i , or correspondingly that
� / ��pi�x << 1. The magnitude of �x is of the order of magnitude of the localization of a nuclear target, and it is
further contracted by the Lorentz transformation due to the motion of the unstable initial particle so that in practice
� << 1. Moreover, in the rest frame of the source �p = 0 and consequently in this case �� = 0.
In conclusion, we have shown that the transition probability for neutrino and neutral meson oscillations can be

obtained from �rst principles by solving the time dependent Schr�odinger equation for the decay of an unstable source
into a coherent superposition of correlated two particle eigenstates with di�erent masses. We have obtain our results
in a relativistically covariant manner by applying well de�ned approximations without recourse to conventional ad-
hoc assumptions which violate principles of quantum mechanics, and have led to much confusion in the literature.
We have shown that the width or lifetime of the source plays a crucial role in understanding this problem, and that
quantum correlations between the �nal state particles relate the decay time of the source to the space-time coordinates
of the these particles. Due to the mass di�erence the wave packets for di�erent mass eigenstates have di�erent group
velocities and separate leading to a �nite coherence length [15], but this e�ect was neglected here.
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Footnotes

1. The justi�cation for Eq. 7 is that after one of the two particles has been detected, i.e. t = t1 or t = t2, its
state does not continue to evolve in time. The generalized wavefunction  (x1; x2; t1; t2), Eq. 10 can then be
interpreted as the probability amplitude for correlated events which occur at the two di�erent space-time points
(x1; t1) and (x2; t2), and is equivalent to the amplitude method in [22], and the formalism in [18]. It can be
shown that this procedure is equivalent to the \collapse" of the wavefunction language, which is the conventional
description when measurements take place at di�erent times, although it is preferable not to invoke this awkward
language.
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2. For t1; t2 � td, the condition t12 = (�v1t1 � �v2t2 � x1 + x2)=�v12 = td relates the decay time td of the source
to the space-time coordinates of the decay particles. It corresponds to the classical relation for the relative
coordinates of these particles which can be understood on the physical grounds that these particles are created
in a region of negligible small spatial dimension, without violating the uncertainty principle because td is a
stochastic variable. This relation has also been obtained by Dolgov et. al., [18], under the assumption that the
source and decay particles follow classical trajectories exactly. In the case that the decay can occur over a range
of values 0 � td � tmax, one must take an average over the probability distribution integrated over this range
provide there are no measurements on the recoil particle which constrain the possible values of t12. In practice
tmax = d=�v, where d is the distance between the target where the unstable particle is created, and a beam stop
where nuclear reactions annihilate it.
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