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An isospin analysis of B ! �� decays yields sin 2�, where � is the usual CKM angle � �
arg[�VtdV �

tb=(VudV
�
ub)] without hadronic uncertainty if isospin is a perfect symmetry. Yet isospin

symmetry is broken not only by electroweak e�ects but also by the u and d quark mass di�erence
| the latter drives �0 � �; �0 mixing and converts the isospin-perfect triangle relation between the
B ! �� amplitudes to a quadrilateral. The error incurred in sin 2� through the neglect of the
resulting isospin-violating e�ects can be signi�cant, particularly if sin 2� is small.

I. INTRODUCTION

In the standard model, CP violation is characterized by a single phase in the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, rendering its elements complex. The CKM matrix is also unitary, so that determining whether or not this is

empirically so is a central test of the standard model's veracity [1]. Ascertaining whether the angles of the unitarity

triangle, �, �, and 
, empirically sum to � and whether its angles are compatible with the measured lengths of its

sides lie at the heart of these tests of the standard model.

We study the impact of isospin violation on the extraction of sin 2� from an isospin analysis in B ! �� decays [2].

Isospin is broken not only by electroweak e�ects but also by the u and d quark mass di�erence. The latter drives

�0 � �; �0 mixing [3], which, in turn, generates an amplitude in B ! �� not included in the isospin analysis. Thus,

although the e�ect of electroweak penguins is estimated to be small [4{6], when all the e�ects of isospin violation are

included, the error in the extracted value of sin 2� can be signi�cant [7].

To review the isospin analysis in B ! �� decays, due to Gronau and London [2], let us consider the time-dependent

asymmetry A(t) [8]:

A(t) =
(1� jrfCP j2)
(1 + jrfCP j2)

cos(�mt)� 2(Im rfCP )

(1 + jrfCP j2)
sin(�mt) ; (1)

where rfCP = (V �

tbVtd=VtbV
�

td)(AfCP =AfCP ) � e�2i�mAfCP =AfCP , AfCP � A(B0
d ! fCP ), and �m � BH �BL [9].

Denoting the amplitudes B+ ! �+�0, B0 ! �0�0, and B0 ! �+�� by A+0, A00, and A+�, respectively, and

introducing AI to denote an amplitude of �nal-state isospin I , we have [2]

1

2
A+� = A2 �A0 ; A00 = 2A2 +A0 ;

1p
2
A+0 = 3A2 ; (2)

where analogous relations exist for A�0, A
00
, and A

+�
in terms of A2 and A0. If isospin were perfect, then the Bose

symmetry of the J = 0 �� state would permit amplitudes merely of I = 0; 2, so that the amplitudes B� ! ���0

would be purely I = 2. In this limit the penguin contributions are strictly of �I = 1=2 character, so that they cannot

contribute to the I = 2 amplitude: no CP violation is possible in the ���0 �nal states. The penguin contribution in

B0 ! �+��, or in �B0 ! �+��, can then be isolated and removed by determining the relative magnitude and phase

of the I = 0 to I = 2 amplitudes. We have

r�+�� = e�2i�m
(A2 �A0)

(A2 �A0)
= e2i�

(1� z)

(1� z)
; (3)

where z(z) � A0=A2(A0=A2) and A2=A2 � exp(�2i�t) with �t � arg(VudV
�

ub) and �m + �t = � + 
 = � � � in the

standard model [8]. Given jA+�j, jA00j, jA+0j, and their charge conjugates, the measurement of Im r�+�� determines

sin 2�, modulo discrete ambiguities in arg((1 � z)=(1� z)), which correspond geometrically to the orientation of the

\triangle" of amplitudes associated with Eq. (2), namely
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A+� + 2A00 =
p
2A+0 ; (4)

with respect to jA+0j = jA�0j and that of its charge conjugate. The triangles' relative orientation can be resolved via

a measurement of Im r�0�0 as well [2], and thus sin 2� is determined uniquely.

II. ISOSPIN VIOLATION AND �0-�; �0 MIXING

We examine the manner in which isospin-violating e�ects impact the extraction of sin 2�, for isospin is merely an

approximate symmetry. The charge di�erence between the u and d quarks engenders a �I = 3=2 electroweak penguin

contribution, which is outside the scope of the delineated isospin analysis [2], although methods have been suggested to

include them [10,11]. This is the only manner in which the u-d charge di�erence enters our analysis, so that we term this

source of isospin breaking an \electroweak e�ect." The u-d quark mass di�erence can also engender a �I = 3=2 strong

penguin contribution through isospin-breaking in the hadronic matrix elements. Moreover, strong-interaction isospin

violation drives �0 � �; �0 mixing [3], admitting an I = 1 amplitude. Although electroweak penguin contributions are

estimated to be small [4{6], other isospin-violating e�ects, such as �0-�; �0 mixing, can be important [7,12].

To include the e�ects of �0-�; �0 mixing, we write the pion mass eigenstate j�0i in terms of the SU(3)f -perfect

states j�3i, j�8i, and j�0i, where, in the quark model, j�3i = juu � ddi=p2, j�8i = juu + dd � 2ssi=p6, and
j�0i = juu + dd + ssi=p3. Explicit relations between the physical and SU(3)f -perfect states can be realized by

expanding QCD to leading order in 1=Nc, momenta, and quark masses to yield a low-energy, e�ective Lagrangian

in which the pseudoscalar meson octet and singlet states are treated on the same footing [3,13]. Diagonalizing the

quadratic terms in �3, �8, and �0 of the resulting e�ective Lagrangian determines the mass eigenstates �0, �, and �0

and yields, to leading order in isospin violation [3],

j�0i = j�3i+ "(cos �j�8i � sin �j�0i) + "0(sin �j�8i+ cos �j�0i) ; (5)

where cos �j�8i � sin �j�0i = j�i + O("), and sin �j�8i + cos �j�0i = j�0i + O("0). Moreover, " = �0� cos � and

"0 = �2�0 ~� sin �, with � = 1+ (4m2
K � 3m2

��m2
�)=(m

2
� �m2

�) � 1:23, ~� = 1=�, �0 �
p
3(md�mu)=(4(ms� m̂)), and

m̂ � (mu+md)=2 [3]. Thus the magnitude of isospin breaking is controlled by the SU(3)-breaking parameter ms� m̂.

The �-�0 mixing angle � is found to be sin 2� = �(4p2=3)(m2
K �m2

�)=(m
2
�0 �m2

�) so that � � �22� [3]. The resulting
" = 1:14�0 is comparable to the one-loop-order chiral perturbation theory result of " = 1:23�0 in � ! �+���0 [14,3].

Empirical constraints also exist on the sign of �0-�; �0 mixing. That is, the ratio of the reduced matrix elements in

Kl3 decays, namely, K
+ ! �0e+�e and K0

L ! ��e+�e, is given by [15] 
fK

+�0

+

f
K0
L
��

+

!expt

= 1:029� 0:010 : (6)

Using the Lagrangian of Ref. [3] and the quark masses mq(� = 1 GeV) of Ref. [16] yields 
fK

+�0

+

f
K0
L
��

+

!
= 1 +

p
3"8 � 1:018� 0:010 ; (7)

where "8 is the �3 � �8 mixing angle, "8 � " cos � + "0 sin �. Note, for comparison, that the one-loop-order chiral

perturbation theory result is 1.022 [17]. In regard to the sin 2� results to follow, it is worth noting that the isospin-

violating parameters we have adopted appear conservative with respect to the existing experimental constraints. Using

mq(� = 2:5GeV) of Ali et al. [16], we �nd " = 1:4 � 10�2 and "0 = 7:7 � 10�3; we use these values in the subsequent

calculations.

In the presence of �0-�; �0 mixing, the B ! �� amplitudes become

A�0 = h���3jHe� jB�i+ "8h���8jHe� jB�i+ "0h���0jHe� jB�i (8)

A
00

= h�3�3jHe� j �B0i+ "8h�3�8jHe� j �B0i+ "0h�3�0jHe� j �B0i ; (9)
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where "0 is the �3 � �0 mixing angle, "0 � "0 cos � � " sin �. Note that either of the �0 mesons in the B0 ! �0�0

amplitude can su�er �0-�; �0 mixing; the factor of two associated with this appears as 2A
00

in Eq. (10). The B ! ��

amplitudes satisfy

A
+�

+ 2A
00 �

p
2A�0 = 2"8h�3�8jHe� j �B0i+ 2"0h�3�0jHe� j �B0i

�
p
2"8h���8jHe� jB�i �

p
2"0h���0jHe� jB�i ; (10)

and thus the triangle relation of Eq.( 4) becomes a quadrilateral. We ignore the relatively unimportant mass di�erences

m�� �m�0 and mB� �mB0 .
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FIG. 1. Reduced amplitudes in B ! �� in the factorization approximation with [Nc, k
2=m2

b ] for a) [2,0.5], b) [3, 0.5] (solid

line) and [3, 0.3] (dashed line), and c) [1, 0.5]. Note that A
00

R � 2A
00
=((GF =

p
2)iVubV

�
ud), A

+�

R � A
+�

=((GF =
p
2)iVubV

�
ud),

and A�0
R � p

2A�0=((GF =
p
2)iVubV

�
ud). The charged modes are separated into tree and penguin contributions, so that

A+0
R � T�+�3 + P�+�0 and A�0

R � T���3 + P���0 , where P���0 includes the isospin-violating tree contribution in A�0
R as

well. The shortest side in each polygon is the vector de�ned by the RHS of Eq. (10); it is non-zero only in the presence of
�0-�; �0 mixing.

III. RESULTS

We proceed by computing the individual amplitudes using the �B = 1 e�ective Hamiltonian resulting from the

operator product expansion in QCD in next-to-leading logarithmic (NLL) order [16], using the factorization approxi-
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mation for the hadronic matrix elements. In this context, we can then apply the isospin analysis delineated above to

infer sin 2� and thus estimate its theoretical systematic error, incurred through the neglect of isospin violating e�ects.

The e�ective Hamiltonian He� for b! dqq decay can be parametrized as [16]

He� =
GFp
2

"
VubV

�

ud(C1O
u
1 + C2O

u
2 ) + VcbV

�

cd(C1O
c
1 + C2O

c
2)� VtbV

�

td

 
10X
i=3

CiOi + CgOg

!#
; (11)

where Oi and Og are as per Ref. [16]; we also adopt their Wilson coe�cients Ci and Cg , computed in the naive

dimensional regularization scheme at a renormalization scale of � = 2:5 GeV [16]. In NLL order, the Wilson coe�cients

are scheme-dependent; yet, after computing the hadronic matrix elements to one-loop-order, the matrix elements of

the e�ective Hamiltonian are still scheme-independent [18]. This can be explicitly realized through the replacement

hdqqjHe� jbi = (GF =
p
2)hdqqj[VubV �

ud(C
e�
1 Ou

1 + Ce�
2 Ou

2 )� VtbV
�

td

P10

i=3 C
e�
i Oi]jbitree, where \tree" denotes a tree-level

matrix element and the Ce�
i are from Ref. [16]. The Ce�

i are complex [19] and depend on both the CKM matrix

parameters and k2, where k is the momentum transferred to the qq pair in b ! dqq decay. Noting Ref. [20] we

use � = 0:12, � = 0:34, and � = 0:2205 [16,21] unless otherwise stated. One expects m2
b=4

<�k2<�m2
b=2 [22]; we use

k2=m2
b = 0:3; 0:5 in what follows. We de�ne the decay constants h��(p)jd
�
5uj0i � �if�p� and h�i(p)ju
�
5uj0i �

�ifu�Ip�, and use the 
avor content of the SU(3)f -perfect states to relate fq�i to f�. Finally, using the quark equations
of motion with PCAC and introducing ai � Ce�

i + Ce�
i+1=Nc for i odd and ai � Ce�

i + Ce�
i�1=Nc for i even, the

B� ! ���3 matrix element in the factorization approximation with use of the Fierz relations is

h ���3jHe� jB�i = GFp
2
[VubV

�

ud(if�FB��3(m
2
��)a1 + ifu�3FB��(m

2
�0)a2)� VtbV

�

td

� (if�FB��3(m
2
��)(a4 + a10 +

2m2
��

(a6 + a8)

(mu +md)(mb �mu)
)� ifu�3FB��(m

2
�0) (12)

� (a4 +
3

2
(a7 � a9)� 1

2
a10 +

m2
�0(a6 � 1

2
a8)

md(mb �md)
))] :

The transition form factors are given by FB��(q
2) = (m2

B�
�m2

��
)FB!�

0 (0)=(1� q2=M2
0+
), where we use FB!�

0 (0) =

0:33 and M0+ = 5:73 GeV as per Refs. [16,23]. Also FB�3 = FB�=
p
2, FB�8 = FB�=

p
6, and FB�0 = FB�=

p
3.

Note that the a4 and a6 terms, which are associated with the strong penguin operators, only contribute to the

h���3jHe� jB�i matrix element if mu 6= md or if fu�3FB��(m
2
�0
) 6= f�FB��3(m

2
��

) | we neglect this latter contri-

bution as we set m�� = m�0 . The strong-penguin contributions, which are isospin-violating, explicitly realize the

induced �I = 3=2 e�ect discussed previously, for the amplitude h���3jHe� jB�i, in concert with the amplitudes

h���+jHe� j �B0i and h�3�3jHe� j �B0i, satisfy the triangle relation of Eq. (4). Thus the h���3jHe� jB�i amplitude

TABLE I. Strong phases and inferred values of sin 2� [2] from amplitudes in the factorization approximation with Nc and

k2=m2
b = 0:5. The strong phase 2�true is the opening angle between the AR

+�
and AR

+� amplitudes in Fig. 1, whereas 2�GL is
the strong phase associated with the closest matching sin 2� values, denoted (sin 2�)GL, from Im r�+��/Im r�0�0 , respectively.
The bounds j2�GQIj and j2�GQIIj on 2�true from Eqs. (2.12) and (2.15) of Ref. [24] are also shown. All angles are in degrees.
We input a) sin 2� = 0:0432 [16,21], b) sin 2� = �0:233 (� = 0:2; � = 0:35) [25], and c) sin 2� = 0:959 (� = �0:12; � = 0:34).

case Nc 2�true j2�GQIj j2�GQIIj j2�GLj (sin 2�)GL

a 2 24.4 24.5 12.5 13.4 -0.145/0.153
a 3 24.2 16.1 15.3 15.4 -0.107/0.133
a 1 23.8 55.8 19.4 17.7 -0.0595/0.101
b 2 19.6 22.0 8.3 9.4 -0.399/-0.0213
b 3 19.4 12.9 12.3 12.4 -0.349/-0.0599
b 1 19.2 56.2 17.3 15.7 -0.287/-0.104
c 2 28.3 34.4 14.8 4.9 0.769/0.701 (�; y)
c 3 28.0 22.8 17.4 4.0 0.662/0.692 (�; y)
c 1 27.6 42.7 21.2 19.5 0.912/0.967

� The matching procedure fails to choose a sin 2� which is as close to the input value as possible.
y The discrete ambiguity in the strong phase is resolved wrongly.
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can still be deemed purely I = 2 even if mu 6= md, as in Eq. (12). In the presence of �0-�; �0 mixing, however, the

B� ! ���0 amplitude can no longer be purely I = 2, as the RHS of Eq. (10) is non-zero and Eq. (4) is no longer

satis�ed.

Numerical results for the reduced amplitudes AR and AR, where A
00

R � 2A
00
=((GF =

p
2)iVubV

�
ud), A

+�

R �
A

+�
=((GF =

p
2)iVubV

�
ud), and A�0R � p

2A�0=((GF =
p
2)iVubV

�
ud), with Nc = 2; 3;1 and k2=m2

b = 0:3; 0:5 are

shown in Fig.1. A+0
R and A�0R are broken into tree and penguin contributions, so that A+0

R � T�+�3 + P�+�0

and A�0R � T���3 + P���0 . Note that \P���0" is de�ned to include the isospin-violating tree contribution in A�0R as

well. The shortest side in each polygon is the vector de�ned by the RHS of Eq. (10). The values of sin 2� extracted

from the computed amplitudes with Nc | note that Nc is regarded as an e�ective parameter in this context | and

k2=m2
b = 0:5 are shown in Table I; the results for k2=m2

b = 0:3 are similar and have been omitted. For reference, the

ratio of penguin to tree amplitudes in B� ! ���0 is jP j=jT j � (2:2� 2:7)%jVtbV �

tdj=jVubV �

udj for Nc = 2; 3 and k2 as

above. Were electroweak penguins the only source of isospin violation, then jP j=jT j � (1:4� 1:5)%jVtbV �

tdj=jVubV �

udj,
commensurate with the estimate of 1.6% in Ref. [4].

In the presence of �0-�; �0 mixing, the A
+�

R , A
�0

R , and A
00

R amplitudes obey a quadrilateral relation as per Eq. (10).

Consequently, the values of sin 2� extracted from Im r�+�� and Im r�0�0 measurements can not only di�er markedly

from the value of sin 2� input but also need not match. The incurred error in sin 2� increases as the value to be

extracted decreases; the structure of Eq. (3) suggests this, for as sin 2� decreases, the quantity Im ((1 � z)=(1� z))

becomes more important to determining the extracted value. It is useful to constrast the impact of the various isospin-

violating e�ects. The presence of �I = 3=2 penguin contributions, be they from mu 6= md or electroweak e�ects,

shift the extracted value of sin 2� from its input value, yet the \matching" of the sin 2� values from the Im r�+��

and Im r�0�0 determinations is una�ected. This arises as the amplitudes in question still satisfy the triangle relations

implied by Eq. (4). The mismatch troubles seen in Table I are driven by �0-�; �0 mixing, though the latter shifts the

values of sin 2� extracted from Im r�+�� as well. Picking the closest matching values of sin 2� in the two �nal states

also picks the solutions closest to the input value; the exceptions are noted in Table I. The matching procedure can

also yield the wrong strong phase; in case c) of Table I with Nc = 2; 3, the triangles of the chosen solutions \point"

in the same direction, whereas they actually point oppositely. If jA00j and jA00j are small [2] the complete isospin
analysis may not be possible, so that we also examine the utility of the bounds recently proposed by Grossman and

Quinn [24] on the strong phase 2�true � arg((1� z)=(1� z)) of Eq. (3). The bounds 2�GQI and 2�GQII given by their

Eqs. (2.12) and (2.15) [24], respectively, follow from Eq. (4), and thus can be broken by isospin-violating e�ects. As

shown in Table I, the bounds typically are broken, and their e�cacy does not improve as the value of sin 2� to be

reconstructed grows large.

To conclude, we have considered the role of isospin violation in B ! �� decays and have found the e�ects to be

signi�cant. Most particularly, the utility of the isospin analysis in determining sin 2� strongly depends on the value to

be reconstructed. The error in sin 2� from a Im r�+�� measurement grows markedly larger as sin 2� grows small |

this is the region of sin 2� currently favored, albeit weakly, by phenomenology [16,21,25,26]. The e�ects found arise in

part because the penguin contribution in B ! �+��, e.g., is itself small; we estimate jP j=jT j < 9%jVtbV �

tdj=jVubV �

udj.
Relative to this scale, the impact of �0-�; �0 mixing is signi�cant. This is displayed in another way in Table II. The

\penguin pollution" in B ! �+�� is such that were no isospin analysis applied, the error in � would be of the order

of 10�� 20�. The isospin-violating e�ects in B ! �+�� suggest that the error in � is still of the order of 5� after the

TABLE II. Errors in � were Im r�+�� taken to be sin 2� (j��jraw) and from applying the Gronau-London analysis [2] in the
presence of isospin-violating corrections (j��jGL) for amplitudes computed in the factorization approximation with Nc = 2 and
k2=m2

b = 0:5. All angles are in degrees. Cases a), b), and c) are de�ned as in Table I.

case Nc Im r�+�� j��jraw j��jGL
a 2 -0.346 11.3 5.4
b 2 -0.514 8.8 5.0
c 2 0.642 16.8 11.6 (�)

� The discrete ambiguity in the strong phase is resolved wrongly in this case | see Table I.
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Gronau-London [2] analysis is applied. Yet, were the penguin contributions in B ! �� larger, pressing the need for

the corrections of the isospin analysis, the isospin-violating e�ects considered would still be germane, for not only

would the �I = 3=2 penguin contributions likely be larger, but the B ! �� and B ! ��0 contributions could also be

larger as well [27]. To conclude, we have shown that the presence of �0-�; �0 mixing breaks the triangle relationship,

Eq. (4), usually assumed [2] and can mask the true value of sin 2�.
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