BES Results on Inclusive D Meson Decays XinChou Lou University of Texas at Dallas A measurement of branching fractions of the D^0 and D^+ mesons into the ϕ meson is reported. The result is based on a data sample of 22.3 pb⁻¹ collected at the CM energy of 4.03 GeV with the BES detector operated at the BEPC e⁺e⁻ storage ring. From tagged $D\overline{D}$ pair events the average branching fraction for a mixture of D^0 and D^+ is determined to be $B(D \to \phi X) = (1.29 \pm 0.51 \pm 0.12)\%$. Upper limits at 90% confidence level are set to be $B(D^0 \to \phi X) < 2.5\%$, $B(D^+ \to \phi X) < 5.0\%$, and $B(D^+ \to \phi e^+ \nu) < 1.6\%$. #### I. INTRODUCTION In an era of high precision experiments such as the B factories and the LHC, accurate measurements of b-flavored particles can benefit from a better knowledge of charm decays and their branching fractions. The inclusive decay $D \to \phi X$ has not been measured ¹. This branching fraction can serve as an independent check of the existence of additional exclusive decays of D mesons that contain a ϕ meson [1], and for B_s^0 physics studies that use the $\phi \ell$ pair to tag the B_s^0 meson [2]. In addition, this branching fraction would be helpful in understanding the charm meson decay mechanisms. In this paper, we report a first measurement of the inclusive ϕ decay branching fractions of charged and neutral D mesons and a new search for the exclusive semileptonic decay $D^+ \to \phi e^+ \bar{\nu}$. ### II. DATA SAMPLE AND ANALYSIS METHODS This measurement is based on 22.3 pb⁻¹ of data collected in e⁺e⁻ annihilations at $\sqrt{s} = 4.03$ GeV at the BEPC during the 1992-1994. The BES detector has been described in detail elsewhere [3]. At $$\sqrt{s}$$ =4.03 GeV charm mesons D^0 and D^+ are produced via $e^+e^- \to D^+D^-, D^0\overline{D^0},$ $D^+D^{*-}, D^{*+}D^-, D^0\overline{D^{*0}}$ $D^{*+}D^{*-}, D^{*0}\overline{D^{*0}}$ followed by cascade decays of the D* mesons. However, the D*- can decay either to $\pi^-\overline{D^0}$ or $\pi^0(\gamma)D^-$, so that reconstructing a D meson does not necessarily determine whether the recoiling D meson is charged or neutral. In order to measure specifically $B(D^0 \to \phi X)$ and $B(D^+ \to \phi X)$, the numbers of neutral and charged D mesons recoiling against a reconstructed D meson, and the type of the D meson from which the ϕ mesons come, must be determined. To this end two methods have been developed and are used to measure the inclusive branching fractions of the D mesons. ## A. The D⁰ and D⁺ combinative double tag method (CDTM) To measure inclusive ϕ branching fractions of the D^0 and D^+ mesons, the ϕ is searched in the recoil side against a fully reconstructed D meson, and the numbers of ϕ events against the D^0 and D^+ decays, $N_{D_{tag}^0}^{\phi}$, $N_{D_{tag}^+}^{\phi}$, are determined, which can be related via ¹Throughout this paper, charge conjugation is implied. $$N_{D_{tag}^0}^{\phi} = \epsilon N_{D_{tag}^0}^{D^-} B(D^- \to \phi X) + \epsilon N_{D_{tag}^0}^{\overline{D^0}} B(\overline{D^0} \to \phi X), \tag{1}$$ $$N_{D_{tag}^{+}}^{\phi} = \epsilon N_{D_{tag}^{+}}^{D^{-}} B(D^{-} \to \phi X) + \epsilon N_{D_{tag}^{+}}^{\overline{D^{0}}} B(\overline{D^{0}} \to \phi X), \tag{2}$$ to the branching fractions of their decays, $B(D^- \to \phi X)$ and $B(D^0 \to \phi X)$, where $N_{D_{tag}}^{D^-}$, $N_{D_{tag}}^{\overline{D^0}}$, $N_{D_{tag}}^{D^-}$, $N_{D_{tag}}^{D^-}$, and $N_{D_{tag}}^{\overline{D^0}}$ are respectively the numbers of D^- and $\overline{D^0}$ decays on the recoil against D^+ and D^0 tags, and ϵ is the detection efficiency of the ϕ . The values of $N_{D_{tag}}^{D^-}$, $N_{D_{tag}}^{D^-}$, $N_{D_{tag}}^{D^-}$, and $N_{D_{tag}}^{D^-}$ are determined from a measurement of the total production cross-sections of ractions $e^+e^- \to D^*\overline{D^*}$, $D^*\overline{D}$ at 4.03 GeV by BES [5]. ### B. The recoil charge method At \sqrt{s} =4.03 GeV, $D^*\overline{D^*}$ and $D^*\overline{D}$ pairs are produced with no additional charged tracks. Charged pions arising from direct D^* decays are very slow, and are mostly undetected in the BES detector. As a result, only decay products of the D^+ and D^0 are visible for most events. Let Q_D be the charm flavor of the reconstructed D meson, and Q_{rec} be the total charge of tracks recoiling against this D meson. The Q_{rec} distribution for D^0 (D^+) centers at 0 (1), and has a spread of ± 1 . The recoil charge method selects neutral and charged D mesons according to $$Q_{rec} = 0$$, or $Q_{rec} = Q_D = -1$ for $D^0 tags$ (3) and $$Q_{rec} \cdot Q_{\rm D} < 0 \text{ for } {\rm D}^+ \ tags$$ (4) For inclusive D decays, the efficiency and the misidentification rate are 0.74 ± 0.02 and 0.25 ± 0.02 , respectively, as obtained from Monte Carlo simulations, and are approximately the same for both charged and neutral D mesons. These numbers are confirmed using kinematically selected data events $e^+e^- \to D^+D^-$ and $e^+e^- \to D^0\overline{D^0}$. For events in which a D tag and a recoil ϕ has been fully reconstructed, the efficiency of the recoil charge method is improved over that of the inclusive D events. A Monte Carlo study of various D decay modes into final states containing a ϕ has been performed, and the variations among their efficiencies are included in the systematic errors. For these events, the recoil charge method selects D meson type correctly $0.91\pm0.01\pm0.02$ of the time, and misidentifies a D for $0.09\pm0.01\pm0.02$ of the events, where the first error is due to Monte Carlo statistics, and the second is systematic. ## III. DATA ANALYSIS ## A. Reconstruction of D, ϕ Mesons Charged tracks are required to have good helix fits which have a normalized chi-square of less than 9 per degree of freedom. These tracks must satisfy $|\cos\theta| < 0.8$, where θ is the polar angle, and be consistent with coming from the primary event vertex. For charged particles, a particle identification procedure is applied. A combined particle confidence level calculated using the dE/dx and TOF measurements is required to be greater than 1% for the π hypothesis. For the kaon hypothesis, $L_k > L_{\pi}$, where L is the likelihood for a particle type, is required. Charged and neutral D mesons are reconstructed via decays $D^0 \to K^-\pi^+$, $K^-\pi^-\pi^+\pi^+$ and $D^+ \to K^-\pi^+\pi^+$. To reduce combinatorial backgrounds, only D mesons from $e^+e^- \to \overline{D}D^*$, $D^*\overline{D}^*$ reactions are selected with cuts on the momenta of $Kn\pi$ combinations. Figures 1(a), 1(b) and 1(c) show the invariant mass distributions for events that pass the selections. The signals are fitted, and after having accounted for double counting, the number of D events is determined to be $9054 \pm 309 \pm 416$, where the first error is statistical and the second systematic. These D events are used as tagged $e^+e^- \to \overline{D}D^*$, $D^*\overline{D}^*$ events in which the recoil side contain an unbiased \overline{D} decay. FIG. 1. Invariant mass distributions for $K^-\pi^+$ (top), $K^-\pi^+\pi^+$ (middle), and $K^-\pi^+\pi^+\pi^-$ (bottom). Table 1 summarizes the numbers of neutral and charged D mesons in the recoil against the reconstructed D tags. The averages from the CDTM method and the recoil charge method, calculated assuming a full correlation between their statistical errors, are $6803\pm303\pm322$ and $2251\pm77\pm112$ for D⁰ and D⁺, respectively. The ϕ meson is reconstructed through its decay to K⁺K⁻. Figure 2 shows the invariant mass distribution of K⁺K⁻ pairs selected. Using convoluted Breit-Wigner and Gaussian functions plus a third order polynomial background to fit the mass spectrum, a mass of $1.0194 \pm 0.0002~{\rm GeV}/c^2$ and a total of $1108 \pm 70~\phi$ events are obtained. In this measurement, a ϕ signal window is defined as the region from 1.00 to 1.04 ${\rm GeV}/c^2$, as indicated by the arrows in Figure 2. TABLE I. Numbers of neutral and charged D mesons on the recoil | method | number of | number of | |---------------|-----------------------------------|---------------| | | $\mathrm{D}^{0} \mathrm{events}$ | D^+ events | | CDTM | 6839 ± 308 | $2215{\pm}70$ | | recoil charge | 6767 ± 297 | 2287 ± 83 | | Average | 6803±303 | 2251±77 | FIG. 2. Invariant mass distribution of K⁺K⁻ pairs. ## **B.** Inclusive $D \rightarrow \phi X$ Figures 3(a) and 3(b) show the invariant mass distributions of K^+K^- pairs from D^+ and D^0 , respectively, as identified by the recoil charge selection criteria. The $Kn\pi$ invariant masses for the single tag are within $\pm 2.5\sigma_{M_D}$ of the D masses. In this measurement, K^+K^- pairs with masses in the ranges 0.98 - 1.00 GeV/c^2 and 1.04 - 1.15 GeV/c^2 are taken as background for the ϕ . The $Kn\pi$ mass regions from 1.7 to 2.1 GeV/c^2 , excluding regions within $\pm 3\sigma_{M_D}$ of the fit D masses, are defined as background control regions for the D mesons. As shown in Figures 3(a) and 3(b), 15 events are found as $D\phi$ candidates, and 14 events are selected as background outside the ϕ mass region. Using the D sideband events, a total of 0.5±0.5 background events has been estimated as the background among the D candidates. Subtracting the background contributions to both the D and the ϕ , we obtain an excess of 10.2±4.0 events in the ϕ signal region. The two D type identification methods, CDTM and the recoil charge method, are applied to these events to extract the numbers of ϕ from specific D⁰ and D⁺ decays. Subtracting backgrounds estimated using the ϕ and D side bands, the two methods determine 3.7±4.7 (CDTM) and 9.7±4.2 (recoil charge) D⁰ $\rightarrow \phi$ X events, and 6.5±5.5 (CDTM), and 0.5±1.7 (recoil charge) D⁺ $\rightarrow \phi$ X events, respectively. Averaging over the two methods and assuming a complete correlation in their statistical errors, the number of D⁰ $\rightarrow \phi$ X and D⁺ $\rightarrow \phi$ X events are set to be 6.7±4.5, and 3.5±3.6, respectively, and are used to determine their branching fractions. FIG. 3. K^+K^- invariant mass distributions for $D^0 \to \phi X$ (top), and $D^+ \to \phi X$ (bottom). # C. Search for the decay $D^+ \to \phi e^+ \nu$ Among the 15 ϕ candidates observed in the recoil side of the events, 4 are accompanied by at least one charged track which are within $|\cos\theta| < 0.85$. Each of these tracks is checked for consistency with being an electron using the dE/dx information. This electron identification requires that electron confidence level to be greater than 1%, and $L_e > L_{\pi}$. None of the accompanying tracks is identified as an electron. #### IV. RESULTS Assuming 10.2 ± 4.0 signal D $\rightarrow \phi X$ events, and correcting for ϕ meson detection efficiency of 0.084 ± 0.006 obtained from a Monte Carlo simulation, the average branching fraction for the BES mixture of D⁰ and D⁺ mesons is measured to be $$B(D \to \phi X) = (1.29 \pm 0.51 \pm 0.12)\%,$$ where the first errors are statistical and second systematic. $\,$ Based on $6.7\pm4.5~\rm D^0\to\phi X$ and $3.5\pm3.6~\rm D^+\to\phi X$ events, as determined in the previous section, 90% C. L. upper limits are set on specific $\rm D^0$, $\rm D^+$ decays to be $$B(D^0 \to \phi X) < 2.5\%,$$ $$B(D^+ \to \phi X) < 5.0\%$$ The results include systematic errors arising from uncertainties ($\pm 0.05\%$, $\pm 0.06\%$ and $\pm 0.04\%$) in the numbers of singly tagged D mesons due to the choice of a background function and fit interval for the single tag samples and uncertainties ($\pm 0.08\%$, $\pm 0.13\%$ and $\pm 0.09\%$) in the inclusive ϕ efficiency. The combined effect of these sources is obtained by adding the uncertainties in quadrature, which yields total systematic errors of $\pm 0.10\%$, $\pm 0.14\%$ and $\pm 0.10\%$ for the D⁰, D⁺, and their sum, respectively. Based on zero candidate $D^+ \to \phi e^+ \nu$ events, and a detection efficiency of 0.0652, a 90% C. L. limit is set for the decays at $$B(D^+ \to \phi e^+ X) < 1.6\%.$$ ## V. CONCLUSION In summary, the inclusive branching fractions of the charged and neutral D mesons into a ϕ have been directly measured. Comparing with the sums of the existing measurements on the exclusive D⁰ and D⁺ decays containing a ϕ in the final states, these BES branching fraction values indicate little room for additional ϕ decay modes of D⁰ and D⁺ mesons. - [1] Particle Data Group, C. Caso et al., Eur. Phys. J. C3 (1998) 1. - [2] DELPHI Collab., P. Abreu et al., Zeit. Phys. C61 (1994) 1. OPAL Collab., A. Akers et al., "An investigation of B_s oscillation using B_s enhanced samples", Contributed paper to International Europhysics Conference on High Energy Physics EPS0276, July 1995, Brussels. - [3] J. Z. Bai et al., Nucl. Instrum. and Methods A344, 319 (1994). - [4] M. H. Ye and Z. P. Zheng, in Proceedings of the XIVth International Symposium on Lepton and Photon Interactions Stanford, California, 1989, edited by M. Riordan (World Scientific, Singapore, 1990), p. 122. - [5] BES Collab., "D[±], D⁰, $\overline{D^0}$ Single Tag and the Measurement of Production Cross Section at $E_{cm} = 4.03$ GeV in e⁺e⁻ Annihilation", to be published.