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We address several topics relevant to CP violating phenomena in charm meson decays. The
in
uence of nearby resonances on the generation CP violating asymmetries in D decays is studied,
and a new mechanism for generating direct CP -violating asymmetries is discussed.

I. INTRODUCTION

Non-perturbative hadron dynamics plays an important role in the physics of non-leptonic D decay. The existence

of the light quark resonances in the neighborhood of the charmed meson mass is a proof that hadron dynamics is

active in this energy region and might a�ect weak decays of charmed particles. Similar e�ects, like �nal state hadron

rescattering, can completely obscure a naive quark model interpretation of the observed processes [1]. One has to be

extremely careful in trying to extract the signals of the New Physics from the charm decay data since rare decays or

charmed meson mixing signals are usually mocked by the hadronic backgrounds. For instance, due to the fact that

the Standard Model amplitude for D0 � �D0 mixing is tiny [2,3], this signal is usually thought of as being one of the

best candidates for the observation of the virtual e�ects of New Physics particles. However, long distance hadronic

e�ects can generate �mD at the level of one or two orders of magnitude larger than that of the short distance [4,5].

For instance, a substantial enhancement of both the �md and ��D is possible due to the resonances having mass

nearby the D0 mass [6].

Hadron dynamics can also have implications for CP violating signals. Many signals of direct CP violation require

two di�erent amplitudes having non-trivial weak and strong phase di�erence to reach a given �nal state. Final

state hadron dynamics is a vital part of this proposal providing non-zero strong phase shifts. Unfortunately, the

impact of the �nal state hadronic rescattering cannot be described in perturbative QCD and therefore calls for a

model-dependent description.

All of the observed nonleptonic D decays are dominated by the tree-level amplitudes in which a W -boson, emitted

in the c ! (s; d) transition, converts to the pair �q1q2. It, however, involves quarks only of the �rst two generations

in the initial, �nal and intermediate states. In order for the CP violating processes to occur, quarks of the third

generation must somehow a�ect the decay amplitude. While trivially realized in the decays of B mesons, this poses

a serious problem in the search of CP violation in charm decays. Normally, the solution is found in the virtual (and

therefore suppressed) e�ects associated with the intermediate state b-quarks, the so-called penguin amplitudes. This

mechanism indeed provides two distinct amplitudes with nontrivial weak and strong phase di�erence. The penguin

amplitude in charm decays is however too small to provide signi�cant CP violating e�ects. This complicates the

extraction of relevant CP violating asymmetries.

Here we shall study the importance of another possibility, that the initial D meson converts weakly to a nearby

resonance which then decays nonleptonically. As will be explained later, the presence of strong phases, as well as the

possibility of having di�erent weak phases, makes the interference of the tree and nearby-resonance amplitudes an

interesting candidate for generating direct CP violating asymmetries [7].

II. NEARBY RESONANCES AND CP VIOLATION IN CHARM

Many signals of direct CP violation in D mesons often involves the asymmetry

aCP �
�D!f � � �D! �f

�D!f + � �D! �f

: (1)

For the theoretical studies of direct CP violation, one selects �nal states that can be reached from at least two di�erent

routes. That is, one identi�es �nal states reachable by weak decay amplitudes bearing di�erent weak phases which
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can be connected by non-trivial strong rescattering. In charmless B-decays the two di�erent weak amplitudes are

typically associated with the tree and penguin transitions. Despite the years of e�ort and sizable branching ratios,

attempts to measure CP violating asymmetries in D decays have yielded only null results. Whether or not direct CP

violation will be seen for B mesons could depend on the strength of �nal state interaction e�ects. While the proof

that these are not necessarily small [8] has been buttressed by evidence for FSI's in B ! D�� transitions [9], whether

or not they are appreciable in any given mode remains problematic. In charm decays, �nal state rescattering e�ects

are expected to be appreciably large due to the fact that the D meson mass lies in the region populated by the light

quark resonances and have been observed experimentally. Therefore, �nal state phase does not pose a problem for

the observation of direct CP violating e�ects in charmed meson decays. As will be discussed below, it is the fact that

the Cabibbo part of the CKM matrix is \almost" unitary (i.e. weak phase e�ects in charmed decays are tiny) that

makes the observation of CP violating e�ects problematic.

In the Standard Model, weak decays of charm quarks are mediated by the local �C = 1 e�ective Hamiltonian
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and where the subscripts are color labels, �L� � 
�(1 + 
5), and we de�ne

 (u) � Vus s+ Vud d ; � (c) � V �cs �s+ V �ud
�d : (4)

The Ci(�) are scale-dependent Wilson coe�cients, C1(mc) ' �0:514 and C2(mc) ' 1:270, in a `scheme-independent'

NLO prescription [10].

If nearby resonances turn out to be a signi�cant source of D0 � �D0 mixing, then they could potentially impact

on CP violating signals like asymmetries. In particular, they might be a vital part of the following mechanism for

generating CP -violating asymmetry of Eq.(1). Let us for de�netness consider the decay mode D+ ! K+ �K0. The

decay amplitude can be decomposed as

A(D+ ! K+ �K0) = AT +AP +AA (5)

which basically indicates that there are contributions form the tree-level AT , penguin AP , and weak annihilation AA

amplitudes. In general, all these amplitudes are represented by complex numbers.

In order to clarify our point it is worth recalling similar situation occurring in B decays. There, the celebrated

penguin-tree amplitude interference assures that the CP -violating asymmetry, similar to the one de�ned in (1), is

non-zero: the part of CKM matrix relevant to the third quark generation is directly probed by the tree-level transition

b ! u�ud(s) (this part provides a nontrivial weak phase), whereas a one-loop penguin amplitude generates part of

the amplitude with trivial weak phase (b ! d(s)u�u with top quark running in the penguin loop). This weak phase

di�erence, supplemented with, for example, Bander-Silverman-Soni mechanism [11] (see, however, [8,12,13]) for the

generation of strong phase di�erence provides all necessary conditions for the non-zero CP violating asymmetry. This

asymmetry might be appreciably large if these two amplitudes are comparable in size. This is indeed the case in

B decays where the size of the large tree-level amplitude is attenuated by the small value of the weak CKM factor

VubV
�

ud(s) whereas small value of the loop-induced penguin diagram1 is almost unchanged by the corresponding weak

CKM factor VtbV
�

td(s). The interference of the tree and penguin amplitudes is proportional to

1This information is directly encoded in the values of the Wilson coe�cients of the weak e�ective Hamiltonian.
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VtbV
�

tsVubV
�

us
�AT

�AP � �6 �AT
�AP (6)

where the superbars in f �Aig indicate that CKM factors have been extracted. If compared to the branching ratio, it

is suppressed by a factor of �2 in the Wolfenstein parameterization of CKM.

Implementing similar mechanism in charm decays one immediately makes the following observation. The weak

decays of the charmed quarks involve only the quarks of the �rst two generations in the initial and �nal state.

Therefore, the only way to include quarks of the third generation is via the virtual e�ects in the penguin loop.

Clearly, in charm quark decays the non-trivial phase is suppressed by both loop factors of the penguin amplitude and

a small combination of the CKM matrix elements, so CP asymmetry is guaranteed to be small for moderate values

of the decay branching ratio. Indeed, for the decay D+ ! K+ �K0 the e�ect of the tree-penguin interference naively

scales as

VusV
�

csVubV
�

cb
�AT

�AP � �6 �AT
�AP : (7)

More importantly, if compared to the branching ratio, this amplitude is suppressed by a factor of �4 in the Wolfenstein

parameterization of CKM.

An interesting e�ect can be observed if we accept the fact that CP violating e�ect in D decays is in fact suppressed

by �4 (i.e. exclude for a moment a possibility of the phases associated with the New Physics contributions) and try to

search for other Standard Model e�ects that might enhance or suppress aCP of Eq. (1). Let us build an asymmetry

Eq. (1) from the amplitude Eq. (5). If we assume that all three components of Eq. (5) are some complex numbers we

�nd

aCP (D
+ ! K+ �K0) = 4�f

Im��b �s Im
�
�AT

�A�P
�
+ Im��s �d Im

�
�AT

�A�A
�
+ Im��b �d Im

�
�AP

�A�A
�

�(D+ ! K+ �K0) + �(D� ! K�K0)
(8)

where �f represents a two-body phase space of KK and �i are the combinations of the CKM matrix elements de�ned

as �i = VuiV
�

ci. The �rst term of Eq. (8) is the familiar tree-penguin interference. Note however, that more interesting

information can be extracted from the second term, the tree-annihilation interference. For this term to be non-zero,

both nontrivial weak and strong phase di�erence must be present. Below we show that this is exactly the case.

First of all we notice that tree and weak annihilation amplitudes contribute with the di�erent CKM matrix element

combinations, AT (D
+ ! K+ �K0) = �s �AT , whereas AA(D

+ ! K+ �K0) = �d �AA. Since the Cabibbo part of the CKM

matrix is not unitary, i.e.

VudV
�

cd + VusV
�

cs + VubV
�

cb = 0; or �d + �s + �b = 0; (9)

the weak phase is induced, Im��s �d = �Im(j�sj2 + ��s �b) = �Im��s�b 6= 0. In fact, it is exactly the same as in the case

of the tree-penguin interference of Eq. (7). Therefore, no additional weak suppression exists for the tree-annihilation

interference. This situation is unique for the charm weak decays.
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FIG. 1. Leading order diagrams (O(N
1=2
c )): (a) tree, (b) weak annihilation, (c) weak annihilation and �nal state rescattering

via D { light quark resonance mixing mechanism.
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Strong phases of �AT and �AA are di�erent as well. This strong phase di�erence, however, cannot be generated in

perturbative QCD. But the fact that this phase di�erence exists can be readily illustrated. At the very least, a part

of the annihilation amplitude can be viewed as a mixing of the D mesons with the nearby resonance with subsequent

strong resonance decay into the �nal state (see, for example, Fig. (1)). The strong phase is generated by the non-zero

resonance width (for the nearby resonance it is not suppressed by 1=m2
c). This e�ect is absent in the tree amplitude

which shows the existence of the nontrivial strong phase di�erence. Indeed, the above explanation should be taken

only as indication of the existence of this phase di�erence. Any realistic value for the strong phase shift should be

calculated by taking into account all possible nonperturbative e�ects. In fact, even though the diagrams of Fig. (1)

provide leading contribution to the amplitude of D ! KK decay, they do not generate strong phase at leading order

in 1=Nc. This is due to the fact that the resonance width, which provides CP concerving phase, is itself of the order

1=Nc. Therefore, subleading diagrams must also be taken into account to generate strong phase di�erence [7]. While

model-independent calculation is not possible at the time [14], model calculations should hint the size of the expected

phase. Calculating the asymmetry one arrives at the bound, aCP < 10�3. We would like to emphasize that the

considered e�ect implies non-zero value for the CP violating asymmetry even in the penguin amplitude is absent or

suppressed. The third term of Eq. (8) involves penguin-annihilation interference and, in spite of the fact that it scales

with � as the previous two terms, can be discarded.

III. CONCLUSIONS

We have studied CP violation in charm decays. In particular we assesed the impact of the �nal state hadron

dynamics on the patterns of CP violation in D decays, the main source of uncertainty in the predictions of CP

violating asymmetries. In particular, we suggested a new interference mechanism for generating non-zero value for

the CP violating asymmetry. Due to the fact that the energy scale associated with charmed mesons is uniquely

located in the region of the QCD spectrum populated by the hadronic resonances, it is possible to generate CP

violating asymmetry via the so-called \tree-annihilation" mechanism.

Clearly, with the new data coming from the running and completed FNAL experiments and CLEO, as well as

upcoming data from B factories, new and exciting results should be expected in the area of charm decays and CP

violation.
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