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Hard di�raction in events with dijets and rapidity gaps has been studied by D� and CDF
for three processes: hard color singlet exchange, hard single di�raction, and hard double pomeron
exchange, using Tevatron pp data at

p
s = 630 GeV and 1.8 TeV. Measurements of rates, �, ET andp

s dependencies are presented and comparisons made with predictions of several models.

I. INTRODUCTION

Events with a region of rapidity space devoid of particles (rapidity gaps) were �rst observed in cosmic ray data

[1]. The idea of di�ractive dissociation of projectile and target to produce such events soon followed [2]. Later the

interpretation of total, elastic and di�ractive cross sections in terms of the exchange of an object with the quantum

numbers of the vacuum, called the pomeron, proved very useful [3]. F. Low and S. Nussinov suggested that the pomeron

corresponds to the interchange of two gluons [4]. In a latter development Ingelman and Schlein (IS) proposed that

high pT jets could be di�ractively produced via pomeron exchange and that this might probe the partonic structure

of the pomeron [5]. Events containing rapidity gaps and jets were �rst observed by UA8 [6], giving rise to the �eld

of hard di�raction. This area of interest has expanded considerably in the last decade, with the availability of high

energy colliding beams. Jet production with rapidity gaps have been observed at the Tevatron [7,8] and at HERA

[9] . CDF and D� have studied dijet + rapidity gap events using data from the 1992-1996 Tevatron pp collider run

(Run I) at center-of-mass energy (
p
s ) = 1.8 TeV, with a short run at 630 GeV during that period. Because of the

large center of mass energy and large integrated luminosity, the new CDF and D� results can give further insight

into di�ractive processes.

The D� detector is described elsewhere [10]. Jets are found in the uranium-liquid argon calorimeters using a cone

algorithm with radius R = 0:7 in the � � � plane [11]. Particle multiplicity is determined in the central region

(j�j < 1:0) using the number of towers (0:1 � 0:1 in �� � ��) with transverse energy (ET ) above 200 MeV in the

central electromagnetic calorimeter and the number of tracks in the central drift chamber. In the forward region this

multiplicity is measured by the number of towers with (ET ) above 125 MeV in the electromagnetic end cap calorimeter

(2.1 < j�j < 4:1) and 500 MeV in the hadronic end cap calorimeter (3.2 < j�j < 5:2). Because the last layer of the

hadronic calorimeter (at the limit of the forward acceptance) is composed of stainless steel and produces less noise

than the uranium sections, the threshold for particle detection was reduced to 50 MeV in this layer. In addition, in

the forward region we also use an array of scintillator hodoscopes, called L� detector, to tag the presence of charged

particles in the region 2.3 < j�j < 4:3.

The CDF detector, described in ref. [12], consists of a large central detector with tracking in a solenoidal �eld and

calorimetry over j�j < 4:2. To measure particle multiplicities, CDF uses the central tracker (j�j < 1:1; pT
track > 300

MeV), the central calorimeter (j�j < 1:1; ET
tower > 300 MeV corrected), and forward calorimeters (2.2 < j�j < 4:2).

For the last two months of the collider run, CDF installed three Roman Pot detectors to trigger on quasi-elastically

scatted antiprotons. Nearly all the pot triggers have 0:05 < � < 0:1, where � = 1� xF is the fraction of momentum

lost by the antiproton and carried by the pomeron.
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II. HARD COLOR SINGLET EXCHANGE

Two jets separated by a rapidity gap has been proposed as the signature of color singlet exchange (CSE) carrying a

high Q2 [13,14]. Rapidity gaps between jets have been observed both at the Tevatron [7] and at the DESY ep Collider

(HERA) [9]. The measured rates of � 1% at the Tevatron and � 10% at HERA are too large to be accounted for by

electroweak boson exchange and indicate a strong interaction process.

D� and CDF have made recent studies of dijet data with central rapidity gaps. Both experiments measure the color

singlet fraction (fS) at
p
s of 630 GeV and 1.8 TeV. The observed color singlet fraction includes the probability that

the rapidity gap is not contaminated by particles from spectator interactions. This survival probability (S � 10% at

1.8 TeV) is assumed to be independent of Bjorken x and the avor of the initial partons in the hard scattering [17,18]

but depends on
p
s (S630=S1800 = 2:2� 0:2) [19].

CDF measures the fraction of colorless exchange to all opposite side dijets from the tracking distribution. Results

are listed in Table II. The ratio of the CDF fractions from the measurements at the two center of mass energies is

R( 630

1800
) = 2:4� 0:9. No ET dependence of the signal is observed.
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FIG. 1. The multiplicity between the dijets for the D� high-ET 1800 GeV sample: (a) two-dimensional multiplicity, ncal vs.
ntrk; (b) ncal only with NBD �t, plotted on a log-log scale to emphasize low multiplicity bins.

experiment
p
s (GeV) jet ET �jet nb. of triggered events

CDF 630 > 8 GeV 1.8< j�j <3.5 1k + 1k(same-side)
D� 630 >12 GeV j�j >1.9 7k
CDF 1800 >20 GeV 1.8< j�j <3.5 10k +30k(same-side)
D� 1800 >12 GeV j�j >1.9 48k
D� 1800 >25 GeV j�j >1.9 21k
D� 1800 >30 GeV j�j >1.9 72k

TABLE I. Kinematic cuts for color singlet exchange.

fS(% ) ET (GeV)
p
s(GeV) experiment

2:7 � 0:7 (stat:)� 0:6 (syst:) > 8 630 CDF
1:85 � 0:09(stat:) � 0:37(syst:) > 12 630 D�

0:54 � 0:06(stat:) � 0:16(syst:) > 12 1800 D�
0:94 � 0:04(stat:) � 0:12(syst:) > 30 1800 D�
1:13 � 0:12(stat:) � 0:11(syst:) >20 1800 CDF

TABLE II. Color singlet Fractions .
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D� has recently published results for dijet + central gap events [20]. (See Table I for kinematic cuts.) Single

interaction events are required. The particle multiplicity in the central rapidity region is approximated by the

multiplicity, ncal, of transverse energy above 200 MeV in the electromagnetic calorimeter, and by the track multiplicity

in the central tracking chamber, ntrk. Figure 1 (a) shows the D� multiplicity distribution for ncal versus ntrk.

To calculate the fraction due to color singlet exchange, the leading edge of each ncal distribution is �tted using a

single negative binomial distribution (NBD). The fraction of rapidity gap events (fS) is calculated from the excess of

events over the �t in the �rst two bins (ncal = 0 or 1) divided by the total number of entries. Figure 1 (b) shows the

ncal distribution and the NBD �t for the high ET sample. See Table II for values of fS. The D� value of the ratio

of the rapidity gap fractions at 630 and 1800 GeV is R( 630

1800
) = 3:4� 1:2.

Measuring the color-singlet fraction as a function of ET , � and
p
s probes the nature of the color-singlet exchange

and its coupling to quarks and gluons. If the color-singlet dynamics are similar to single gluon exchange except for

di�erent coupling factors to quarks and gluons, the color-singlet fraction would depend only on parton distribution

functions via xF . Thus for a color-singlet that couples more strongly to gluons than quarks, the color-singlet fraction

would fall as a function of increasing x, since the gluon distribution becomes suppressed relative to the quark distri-

bution as x increases. This implies a decreasing color singlet fraction with increasing jet ET and �� or decreasingp
s.

To measure the color-singlet fraction as a function of ET and �, D� uses the two-dimensional multiplicity,

(ncal vs: ntrk) which gives improved signal-to-background ratios compared to the NBD method. This is useful

for smaller statistics samples and avoids large uncertainties in the color-exchange background subtraction. The \2D"

color-singlet fraction f2D is de�ned as the fraction of events with ncal + ntrk < 2. The results are shown in Figure 2.

The systematic errors include e�ects from background estimation. The measured color-singlet fraction shows a slight

rise as a function of dijet ET and ��.

To compare the experimental color singlet fractions to models, D� uses HERWIG 5.9 [21], which includes a two-

gluon exchange with BFKL dynamics [15], and uses CTEQ2M parton distribution functions. In addition, D� uses

the t-channel photon exchange process in HERWIG to investigate models in which the color singlet couples only to

quarks with a massless photon-like singlet.

In the soft-color rearrangement model [16], initial state quarks have fewer color combinations and thus, a higher

probability of being rearranged into a colorless state, than initial state gluons, i.e. Cgg < Cqg < Cqq , where the \Cabs"

are the e�ective color factors representing the couplings to di�erent initial state partons. A reasonable choice of color

factors is Cqq =
1

9
, Cqg =

1

24
and Cgg = ( 1

64
). Predictions of these models are simultaneously �t to the experimental

ET and �� dependence of fS at
p
s= 1.8 TeV, letting the normalization oat. The results are shown in Figure 2.

The data favour color-singlet models that couple more strongly to quarks than gluons, but a single-gluon model (no

dependence) can not be excluded.
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FIG. 2. Monte Carlo �ts to the measured color-singlet fraction f2D . The normalization is allowed to oat.
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III. HARD SINGLE DIFFRACTION

In the IS picture of hard single di�raction, a pomeron (color singlet object) is emitted from the incident p (p) and

undergoes a hard scattering with the p (p), leaving a rapidity gap in the direction of the parent particle. The signature

is two jets produced on the same side and a forward rapidity gap along the direction of one of initial beam particles.

FIG. 3. Ratio of Data to Monte Carlo simulation as a function of � using a at gluon distribution and standard pomeron
ux

Data was taken by the CDF detector at the end of Run I using a trigger which requires tagging the recoil p with

\Roman Pot" detectors. The typical acceptance for these detectors is 0:05 < � < 0:1 and 0 < jtj < 2 GeV 2, where

� is the fractional momentum lost by the antiproton and t its four momentum squared. After applying several cuts

to select events with a good reconstructed track in the Roman Pots, CDF extracted the momentum fraction of the

interacting parton in the pomeron, �, for dijet events with ET > 7GeV , using the following expression:

� =
Ejet1
T exp(��jet1) +Ejet2

T exp(��jet2)
2�Pbeam

(1)

The � distribution for the pomeron was obtained by subtracting several background contributions in the data, of

which the most importants are 1) non-di�ractive dijet events accidentally overlapped with a Roman Pot hit, 2) meson

exchange background and 3) double di�raction background. After subtracting these contributions from the data, then

unfolding the detector acceptance by using simulations with a at gluon distribution, the data was divided by Monte

Carlo simulations based on POMPYT [22] using a at gluon distribution and the standard Donnachie and Landsho�

ux parametrization [23]. The comparison, shown in Figure 3, shows agreement in shape for � > 0:2, but there is a

discrepancy in the normalization by about a factor of 6, as well as an enhancement for the low � region.
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FIG. 4. Number of hits level 0 (nL0) and calorimeter towers (nCAL) above threshold opposite to jets in the forward trigger
sample at center of mass energies 1800 and 630GeV.

The D� data were obtained using an inclusive jet trigger or a forward two jet trigger. Events are selected with two

jets with ET > 12 GeV and j�j >1.6. The number of end cap calorimeter towers (ncal) above threshold is measured

opposite to the leading two jets. The ncal distribution for the forward trigger sample at center of mass energies of

1800 and 630 GeV is shown in Figure 4. A clear peak is seen in the nL0 = ncal = 0 (zero multiplicity) bin as

expected for a di�ractive signal. A two-dimensional �t on the nL0 vs: ncal distribution, where data and background

are �t simultaneously, allows the direct extraction of the fraction of events containing a rapidity gap at both energies.

This gap fraction, including statistical and systematic uncertainties, is determined to be 0:64� 0:05(stat: + syst:)%

for the 1800 GeV data and 1:23 + 0:10 � 0:09(stat: + syst:)% for the 630 GeV data. Work is in progress for the

extraction of the pomeron parton distributions.

IV. HARD DOUBLE POMERON EXCHANGE

Central dijet events containing two rapidity gaps or a rapidity gap on the opposite side of a quasi-elastically scattered

anti-proton have been studied by D� and CDF respectively. This event topology is consistent with double pomeron

exchange (DPE). The data can be used to give more information about the hypothesized pomeron.

CDF took data at 1800 GeV center of mass energy using the Roman Pot trigger to tag antiprotons. A sample

of 27,000 events with a tagged p and at least two jets with ET > 7 GeV is obtained. Low multiplicity events are

selected by requiring NBBC(west) � 6 in the 16 element Beam-beam counters (BBC) on the same side as the pots.

This gives 22,304 PJJ (pot-jet-jet) events. A sample of minimum bias events, with the same dijet selection, is used

for comparison. Figure 5 (a) shows the calorimeter tower multiplicity in the east side (opposite to the pot track),

NFCAL, versus the number of hits in the BBC.
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(a) (b)
FIG. 5. (a) East side BBC vs Cal. tower multiplicity distribution for PJJ events, and 7 GeV dijets. (b) East side BBC vs

Cal. tower multiplicity distribution for Monte Carlo Double Pomeron (with a at � distribution.)

In order to understand the shape of this distribution, Monte Carlo events were generated using a version of POMPYT

modi�ed to include double pomeron exchange, where the incoming proton and antiproton emit pomerons with a

standard ux (Donnachie and Landsho� form [23] with parameters as measured by CDF [24]). The pomeron-pomeron

interaction is treated like a hadron hadron collision which produces jets. A at � distribution of partons inside the

pomeron was assumed. Di�ractive deep inelastic scattering data from HERA suggest such a hard structure with a

rather at �-distribution [25]. The simulated events are shown in Figure 5 (b). The strong signal in the (0,0) bin

only contains 24 % of the DPE events with � < 0:1 for 7 GeV dijets.

By extrapolating linearly into the NBBC = NFCAL = 0 bin along the diagonal axis, CDF obtained the ratio of

dijet gap to dijet no-gap events to be:

R(PJJG
PJJ

) = [0:36� 0:05(stat:)� (0:03(syst:)]%

where G means gap (no detected particles for 2:4 < � < 5:9), JJ means two jets with ET > 7 GeV and P means a

pot track with 0:05 < � < 0:1. When the discrepancy factor, D=18%, found in previous analyses of di�raction in pp

and ep collisions [8], is applied (squared), the ratio from simulation is in good agreement with the data.
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FIG. 6. (a) Multiplicity distribution of calorimeter towers (ncal) opposite a tagged rapidity gap for the 630 GeV D� data.
The bottom plot shows an expanded view of the low multiplicity region. (b) ET distributions of the leading two jets for three
data samples at 630 GeV. An inclusive sample requiring j�jetj < 1:0 is shown in the solid histogram. The distribution with the
added requirement of one forward rapidity gap is shown with dotted lines and the distribution for double gap events is shown
in circles.

D� has taken inclusive jet data with a special trigger and searched for dijet events with two forward rapidity gaps

along the direction of the proton and antiproton. Events were selected having two jets with ET > 12 GeV, j�jetj < 1:0
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and a rapidity gap in the region 2:5 < j�j < 5:2: The multiplicity distribution of calorimeter towers and Level� hits

(nL�), on the opposite side to the rapidity gap, for data taken at 630 GeV center of mass energy is shown in Figure 6

(a). A clear peak at low multiplicity is observed above a fairly at background in qualitative agreement with that

expected for double pomeron exchange. Figure 6 (b) shows the ET spectra for the two leading jets in an inclusive

sample with two central ET > 12 GeV jets , a single forward gap sample and the double gap sample at 630 GeV. All

three spectra are in good agreement where data are available, implying that the dynamics of leading jets produced

in rapidity gap events appear similar to those of inclusive QCD production. Similar results are seen by D� in data

taken at 1800 GeV.

V. CONCLUSIONS

Recent studies of hard di�raction at the Tevatron have given new information about rates of di�raction and

dependencies on ET , � and
p
s .

The fraction of dijet events produced via hard color singlet exchange is about 1% at 1.8 TeV and is larger by a factor

of 2 to 3 at
p
s= 630 GeV. D� has compared the ET and �� dependence of the fraction of hard color singlet events

to several models. The data favor a soft-color rearrangement model preferring initial quark states over two-gluon

color-singlet models.

CDF has preliminary results on the momentum distribution of partons in the pomeron using \Roman Pot" detectors

to measure quasi-elastic scattered p in hard single di�ractive events. D� has studied hard single di�raction in forward

dijet events and new results on pomeron parton distributions will soon be available.

Both CDF and D� have preliminary evidence for events with a hard double pomeron exchange topology. CDF

has measured the fraction of pot dijet gap events to be 0.36% of the pot dijet events at
p
s = 1.8 TeV. D� has

studied gap-dijet-gap events at
p
s= 630 GeV and 1.8 TeV. The ET distribution of the leading jets in double pomeron

exchange type events is similar to other processes producing jets.

More detailed studies of the Tevatron data and further comparisons with models should give more insight into the

nature of hard di�raction.
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