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We review recent progress in understanding the center-vortex picture of con�nement for SU(N).
A notable development is the spectacular con�rmation on the lattice of center-vortex predictions for
topological con�nement and the area law in the fundamental-representation Wilson loop. Recent
theoretical progress includes: large-N scaling, the heavy-quark potential for SU(3) baryons, the
breakable \string" potential in the adjoint representation, the existence and role of nexuses (solitons
which are meeting-points for center vortices whose total ux is zero (mod N), and the role of nexuses
in understanding con�nement in the d=3 Georgi-Glashow model.

I. INTRODUCTION

The center-vortex picture of con�nement is now about twenty years old [1{5]. It has recently come to prominence

because of lattice calculations [6,7] which, by various means, compute only the long-range (con�ning) center-vortex

contribution to the fundamental-representation Wilson loop. It turns out that this center-vortex-only area law agrees

exactly (that is, to the accuracy of the computation) with the conventionally-computed area law. In other words, the

only source of con�nement is center vortices. Furthermore, it has been shown both theoretically [8,9] and computa-

tionally [10] that on the lattice removal of center vortices destroys con�nement. The demonstrations proceed, as in

e�ect also do the lattice computations showing center-vortex con�nement, by dividing an SU(N) gauge theory into

SU(N)=ZN and ZN degrees of freedom; the latter are identi�ed with center vortices (see below) and are shown to

con�ne. The mechanism of con�nement is essentially a topological one [1], in which closed vortices (of co-dimension

two) when linked with the Wilson loop in three or four dimensions yield a phase-factor contribution to the Wilson

loop which is an element of the center raised to a power which is the Gauss linking number of the vortex and the

loop. The rest of the degrees of freedom contribute only to the perimeter law. No statement need be made, as in

some other mechanisms of con�nement, about a choice of gauge (although a choice of gauge may be convenient for,

e.g., certain lattice computations). Figure 1 shows some results [9] for the SU(3) heavy-quark potential saving only

the phase factor of center vortices, compared to the same potential computed in the full theory. The potentials di�er

at short distances, as is expected (see the discussion on the adjoint potential in Section III).

FIG. 1. Heavy-quark potential for smoothed center vortices in SU(3) (circles marked Z(3)), compared to the full theory[
from Kov�acs and Tomboulis [9]].

1



Over the years several other aspects of the center-vortex picture have been investigated. These include the structure

of the center-vortex contribution to the adjoint potential [11,12], which is (as �rst computed on the lattice by Bernard

[13]) approximately linearly-rising for a while, then breaking when the energy stored in the potential is enough to

materialize the two gluons needed to screen the two sides of the adjoint Wilson loop. As essential ingredient in this

behavior of the adjoint potential is the fact that center vortices have a �nite thickness, as determined by a dynamical

gluon mass.

It has also been argued [14] that, in SU(N), the potential for N heavy quarks forming a baryon is the sum of N

pairwise potentials, each having 1=(N � 1) the strength of the q�q potential, rather than an N -body potential with

\strings" meeting at a central point. (The author knows of one lattice computation [15] of the baryonic potential for

SU(3), which agrees with the center-vortex result; it would be valuable to repeat this computation.)

The continuum center-vortex picture developed in Ref. [1] has been shown [16] to admit a new kind of soliton, the

nexus. The nexus, as its name implies, is a meeting point of up to N vortices in SU(N), provided that the total

magnetic ux adds to zero (mod N). It is the closest thing to a true monopole in a gauge theory with no symmetry

breaking.

There are, of course, competing arguments for con�nement (e.g., dual superconductivity, maximal Abelian projec-

tion/monopoles, etc.) which we will not review here. But in one particular case, the d=3 Georgi-Glashow model,

it has proven possible to clarify the relation of a previous argument by Polyakov [17] for con�nement to the center

vortex picture. Polyakov's argument invoked a condensate of 't Hooft-Polyakov (TP) monopoles as in dual supercon-

ductivity; this picture has been widely interpreted as possessing a U(1) disorder appropriate to compact d=3 QED. In

fact, as several authors [18,19] have argued, the Georgi-Glashow model for any �nite value of its parameters possesses

features that are only explicable in terms of the underlying SU(2) disorder. Ambj�rn and Greensite [18] speculate,

and the present author [19] shows, that there is a smooth transition from a con�guration which the author describes as

nexuses [16] and center vortices to the TP monopole as the adjoint-Higgs symmetry breaking of the Georgi-Glashow

model is turned o� (by reducing the Higgs VEV toward zero), such that the underlying physics is essentially that of

center-vortex con�nement, with TP monopole con�nement as a special case.

In the sections below, we describe this progress in more detail.

II. CENTER VORTICES IN THE CONTINUUM

It was pointed out long ago [20] that, because of the infrared instability of non-Abelian gauge theories in three

and four dimensions, a dynamical gluon mass (not associated with symmetry breaking) must be generated to cure

this instability. The infrared-e�ective action describing such mass generation is just the sum of the usual Yang-Mills

action plus a gauged non-linear sigma model action. This action can only be taken seriously in the infrared, because

the dynamical mass vanishes rapidly in the ultraviolet, where the action reduces to the usual Yang-Mills term.

This e�ective action has numerous solitons, among them center vortices, which are rather like Nielsen-Olesen vortices

with a special Higgs structure. They have co-dimension two, meaning that in three dimensions they are tube-like,

and in four dimensions eggshell-like. For brevity we restrict ourselves to the d=3 case; see the original literature for

the d=4 analogs.

A Euclidean three-dimensional center vortex is described, for SU(2), by the (antihermitean) potential

Ai(x) = 2�(
�3
2ig

)�ijk@j

I
V

dzk[�m(x� z)��0(x� z)] (1)

where g is the gauge coupling and �m;0 is the free Feynman propagator for mass m; 0. (The simple generalization to

the N � 1 distinct vortices of SU(N) is given in Ref. [12].) The integral goes over some closed curve V ; in the simple

Abelian version of equation (1), integrals over open curves lead to short-range singularities, long-range monopole

�elds, or both. (In Section VII this restriction is removed by considering intrinically non-Abelian vortices.) Note that

while each of the two terms on the left-hand side of (1) have Dirac-string singularities, these cancel so that the vortex
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potential is �nite along the curve V . The massless-propagator part of this potential is in fact a (singular) pure-gauge

term, and is responsible for con�nement.

We can express the quantization constraint that center vortices must have magnetic uxes lying in the center of

the gauge group as follows. Construct the holonomy of the pure gauge, or massless part, of the vortex around a loop

�. Link the loop � and the vortex curve V once, in the Gauss sense. Then the holonomy must lie in the center. We

give the general formula for a singly-linked vortex of unit ux in SU(N), the massless part of whose gauge potential

we call A
(0)
i :

exp g

I
�

dxiA
(0)
i (x) = exp(i2�=N): (2)

The reason that this holonomy must lie in the center is that a gauge potential when transported around (linked with)

a center vortex must be single-valued; of course, the gauge group for the gauge potentials themselves is SU(N)=ZN

so that the center is trivially represented. Equation (2) represents the homotopy �1(SU(N)=ZN ) = ZN .

Now consider the contribution of center vortices to con�nement. Take the fundamental-representation Wilson loop

to be large in the sense that its length and all other spatial scales are large compared to m�1. Then to compute the

area law we can omit the massive propagator in (1). A simple computation [1] gives the result for one vortex V :

TrF exp

I
�

dxiAi(x) = exp(
�2�i

2

I
V

dzi

I
�

dxj�ijk
(x� z)k
4�jx� zj

): (3)

The integral in (3) is the Gauss linking integral, so that the contribution of a center vortex of unit ux linked J times

to the Wilson loop is exp(2�iJ=N), that is, (�)J for SU(2). It is straightforward to show [1,12] that an area law

follows from averaging the uctuations in this phase factor. All contributions to the Wilson loop from the massive

terms in (1) are perimeter-law.

III. THE ADJOINT POTENTIAL

For the adjoint potential of SU(2) the calculation corresponding to equation (3) yields exp(2�iJ) � 1, so there is

no area law, and no contribution from the long-range pure-gauge part of the center vortex. However, the massive

part does contribute. For an adjoint Wilson loop whose size is comparable to m�1 the massive, or thick, part of the

vortex may only partially overlap the Wilson loop. The result [11,12] is that the adjoint potential decreases as the

size of the adjoint Wilson loop decreases. For distances on the scale of m�1 the potential rises roughly linearly, then

reaches an asymptotic value which scales with m. This simply represents the inuence of all the vortices within a

distance of order m�1 of the Wilson loop; vortices remote from the loop give exponentially-vanishing contributions.

The interpretation [11{13] of this asymptotic value is that it is the energy required to pop a pair of gluons out of the

vacuum to screen the Wilson loop.

In calculating the adjoint Wilson loop one must be careful not to make common approximations such as saving only

quadratic terms in the gauge potential Ai in the expansion of the exponent of the Wilson loop. This is analogous to

the approximation cosx ' 1� x2=2; it fails to recognize the fact that the Wilson loop is a periodic function of ux

integrals like
H
dxiAi. Such approximations lead to Casimir scaling (the potential scales with the quadratic Casimir

of the representation used in the Wilson loop), but there is no requirement for Casimir scaling in the exact theory.

This has led to some controversy over what happens in the center-vortex picture at large N . Based on experience

with d=2 QCD (which does not have center vortices) one might expect that all representations, including the adjoint,

show an area law at large N . The present author claims [12] that there is a kind of large-N scaling for center vortices,

in which the fundamental-loop string tension behaves like �N=(N � 1) where � is the two-dimensional density of

vortices, but in which the adjoint potential always shows only a perimeter law. In fact, it is shown that the leading

term in the adjoint potential is a universal function independent of N at large N . But there are di�erent views; see

Ref. [21]. These authors invoke center vortices whose size grows logarithmically with N in an attempt to save Casimir
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scaling and e�ective adjoint con�nement on at least some distance scales. There seems to be no place for such growth

of vortex size in the continuum picture discussed in the present work.

We note that old arguments about the suppression of various kinds of solitons at large N , coming from action-

barrier factors like exp(�A=g2) � exp(�N), do not necessarily hold since this exponential vanishing can be exactly

matched by exponential growth coming from collective-coordinate integrals. See Ref. [12] for such arguments in the

center-vortex case.

IV. BARYONIC POTENTIALS AND CENTER VORTICES

For years it has been argued, based on a strong-coupling approximation, that in SU(3) the potential between three

heavy quarks is equivalent to three strings attaching the quarks to a central line (the so-called Y con�guration). But

this is not what the center-vortex picture says [1,14]. There is instead a � con�guration, with a sum of three linearly-

rising potentials acting pairwise between the quarks, and with half the strength of the q�q potential. The center-vortex

mechanism is a non-trivial generalization of that described in Section II for the usual Wilson loop. An essential part of

the generalization to three (N) quarks in SU(3) (SU(N)) is the non-Abelian Stokes' theorem applicable to baryonic

Wilson loops, �rst proved in [14]. One must use this Stokes' theorem to convert loop integrals to surface integrals, in

order to demonstrate that a large baryonic Wilson loop in the presence of a center vortex develops a phase factor in

the group center, depending on the linkage of the vortices to the baryonic loop. In turn, this linkage must be de�ned

topologically so that it can be reduced to a sum of Gaussian link integrals. (Such a description is, in fact, impossible

for an Abelian theory.) Ultimately, the uctuations in the phase factor lead to the � potential described above.

The non-Abelian Stokes' theorem relates a line integral to a surface integral; the surface is bounded in part by the

contour of the line integral. The link number of a vortex and a contour is found by counting (with sign) the number

of vortex penetrations of this surface. For a baryonic line integral the contour is not a simple closed and oriented

loop, and the required surfaces are more complicated than those which span the pairs of quark lines. Such surfaces

make no sense, because their bounding contours have no �xed orientation. Instead, the three surfaces involved each

have one quark line as part of the contour and a shared central line which closes the contour. Of course, the surface

integrals must be independent of this choice of central line, and they are. Because the center vortices have magnetic

uxes lying in the center of the group, it can be shown that this arbitrary central line also has no e�ect on the value

of the linkage of a vortex with the baryonic Wilson loop, and allows for the necessary demonstration of topologically-

invariant linkages. What happens is that for SU(N) one only needs to de�ne link numbers mod N , and that is what

is described by the non-Abelian Stokes' theorem.

V. NEXUSES

There are generalizations [1,16] of the closed loops of center vortices as described in equation (1). They consist of

up to N vortex lines (surfaces) meeting at a point (along a line) in d=3(4), provided that the net magnetic ux is

zero mod N . The joining region of these vortices is a soliton of size m�1 which has been called [16] a nexus. It must

be emphasized that these solitons only exist in a non-Abelian gauge theory; naive Abelian versions of nexuses and

the related vortex con�gurations su�er from naked Dirac strings and other diseases.

As sketched in Fig. 1, a nexus in SU(2) is a place where two center vortices as described in equation (1) meet,

but with oppositely-directed �eld strengths (this concept is easy to grasp for an Abelian theory, but less so for a

non-Abelian theory; nonetheless, it can be made sensible). Given that nexuses exist, vortices may either terminate

on them or form closed loops. So if a vortex line begins on a nexus it must end on an anti-nexus, and the only

con�gurations available in SU(2) are closed loops with as many nexuses as antinexuses, and corresponding reversals

of the directions of the magnetic �elds. These reversals have no inuence on the area law, since exp�i� = �1 and

the Wilson-loop arguments given earlier are unchanged.
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FIG. 2. A sketch of an SU(2) nexus and anti-nexus (black circles) separating regions of center vortices with oppositely-directed
�eld strengths.

Presumably in the pure gauge theory nexuses are suppressed to low levels, because it costs action to make them,

which is unlikely to be made up for by the increased entropy of �eld reversals. But it should be possible to arrange

special lattice boundary conditions which would only allow for nexus-vortex combinations to be formed, and it would

be interesting to study them as further con�rmation of the underlying physics of center vortices.

Furthermore, there are cases where nexuses play an essential role; we describe one such case next.

VI. NEXUSES, VORTICES, AND THE D=3 GEORGI-GLASHOW MODEL

The Georgi-Glashow model is that of an SU(2) gauge theory with adjoint-Higgs symmetry breaking; two \charged"

gauge bosons become massive, with mass M = gv where v is the Higgs VEV. The \neutral" or electromagnetic

gauge boson is massless (at least classically). This model possesses TP monopoles with long-range magnetic �elds.

At large distances the TP monopole gauge potential becomes that of the Wu-Yang monopole. Polyakov [17] long

ago showed that these monopoles, if condensed, would lead to con�nement in d=3 by the dual superconductivity

mechanism then in favor. His demonstration is appropriate to the semiclassical regime v � g, where the action of

the TP monopoles was O(4�M=g2) ' 4�v=g � 1. Polyakov showed that a condensate of TP monopoles could form,

with an exponentially-small monopole volume density, of order exp(�const:v=g). This condensate density induced a

mass for the (classically massless) neutral �eld, of the same order.

Consider �rst an isolated TP monopole, with massless photonic �elds. This monopole shows quantized magnetic

ux as expressed through the usual integral
R
dSiBi over the sphere at in�nity, where Bi is the 't Hooft magnetic

�eld. This is strictly a non-Abelian e�ect, since an Abelian magnetic �eld (i.e., ~B = ~r � ~A) must have, by Stokes'

theorem, zero ux through any closed surface. Flux quantization expresses the homotopy �2(SU(2)=U(1)) = Z.

If the photonic �eld picks up a mass, however small, the ux at in�nity must vanish because of the exponential

decrease of the �elds. In Polyakov's semiclassical limit this decrease is postponed to exponentially-large distances,

since v � g. But at shorter distance scales con�nement is by conventional dual superconductivity e�ects.

What happens as we reduce the Higgs VEV v, in order to turn o� the symmetry breaking? It appears that at

v=0 we are left with a theory very much like pure gauge theory with no scalar �elds (the now-massless scalar �elds

do not, for example, stabilize the infrared behavior of the theory [19]). In such a case, there will be dynamical mass

generation as described in earlier sections of this paper, and the center-vortex picture follows. In fact, because of

infrared instability, the threshhold for dynamical mass generation [20] occurs at a critical value vc of order g [19],

where the TP monopole action is no longer large. Now there are two sources of mass: The �rst is the usual Higgs

e�ect, which gives a mass M = vg � g2, and the second is dynamical mass generation as described earlier, which

gives a mass m � g2 equally to all three gauge �elds. These two masses come from di�erent mechanisms and are

generically unequal.

One can write down an e�ective action which expresses both of these mass e�ects; it is simply the usual Georgi-

Glashow action supplemented by a gauged non-linear sigma model term, as was used to describe dynamical mass
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generation. It turns out [19] that this action has nexus-vortex solitons which are in e�ect TP monopoles with two

di�erent masses, one for the charged �elds and one for the photonic �eld. This, as we have seen earlier, is in any

event what happens once TP monopoles condense in the semiclassical picture of Polyakov. These solitons reduce to

the original TP monopole in the limit m = 0, and reduce to a version of the original nexus-vortex solitons found in

Ref. [16].

To describe these solitons we start from an Abelian con�guration, which is a modi�cation of the center vortex

described in equation (1). This con�guration is:

Ai(x) = 2�(
�3
2i
)�ijk@j [

Z
1

0

dz +

Z
�1

0

dz]�m(x � z): (4)

It partially describes two Abelian monopoles back-to-back, with oppositely-directed �eld strengths along the z-axis.

By itself it is unacceptable, because there are no long-range pure-gauge parts which cancel the Dirac string singularities

in (4). Figure 2 shows schematically the nature of the �eld lines and Dirac strings coming from the gauge potential

(4). The �elds have an extent transverse to the z-axis of m�1. Because the gauge potential (4) is Abelian, the Dirac

strings must be present in order to yield zero net magnetic ux over the sphere at in�nity.

FIG. 3. Sketch of the �eld lines associated with the gauge potential of equation (4). Thick lines indicate Dirac strings.

In the limit m = 0 equation (4) reduces to a Wu-Yang monopole presented in a singular gauge; since the TP

monopole also becomes the Wu-Yang monopole at large distances, (4) is suitable to describe the TP monopole at

large distances in this limit, provided that the Dirac strings can be removed with a (necessarily non-Abelian and

singular) gauge transformation, which serves the role of the �0 term in (1). This gauge transformation does two

things simultaneously and non-trivially; the �rst is to remove the Dirac strings in (4). The second is to provide the

correct long-range behavior of the gauge potential so that both the Higgs mass term and the dynamical mass term in

the action are �nite at long distances. The required gauge transformation is [19]:

Ai ! V AiV
�1 + V @iV

�1; V = e�i�� �r̂=2 (5)

where the gauge potential Ai is given in (4).

The remaining steps are straightforward; details can be found in Ref. [19]. One writes down an ansatz for the gauge

potential which 1) reduces to the TP monopole in the limit m = 0, 2) reduces to the nexus-vortex potential (5) (that

is, the gauge transform of (4)) in the limit M = 0, and 3) for m 6= 0 approaches the gauge V @iV
�1 at in�nity. When

neither mass vanishes, this ansatz describes a nexus-vortex combination with the nexus essentially describing the

short-range behavior of the TP monopole, with long-range �elds essentially describing the pure-gauge nexus-vortex

combination, and with no Dirac strings. The con�guration of �elds then looks like those of Figure 3:

FIG. 4. Sketch of the �eld lines associated with a non-singular nexus-vortex combination with two gauge masses M;m; it
reduces to the TP monopole in the m = 0 limit.

The closed-loop version of this con�guration, like the pure-gauge nexus-vortex combination of Section V and Figure

1, shows topological con�nement in the same manner as described in Section II. Ambj�rn and Greensite [18] have also

speculated that con�gurations similar to that shown in Figure 3 are relevant to con�nement in the Georgi-Glashow

model. These authors discuss other ways in which the d=3 Georgi-Glashow model is not just three-dimensional
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compact QED. The con�guration of Figure 3 is as close as one can get to TP monopoles when the photonic �eld is

massive, and the homotopy is the �1 homotopy of vortices and not the �2 homotopy of true monopoles.

The upshot is that even for large values of v=g in the Georgi-Glashow model the con�ning properties of this model at

large enough distances are those of the center-vortex picture. One need not turn o� the symmetry breaking completely

to recover center vortices; at a critical value vc � g of the Higgs VEV this model is qualitatively the same as that of

the pure-gauge theory with no Higgs �elds.

VII. SUMMARY

In recent times, lattice computations and lattice-based theory have shown that center vortices are the speci�c and

only mechanism of con�nement in gauge theory. The center-vortex picture has been extended in several directions,

including large-N scaling, the adjoint potential, the baryonic potential in SU(3), the existence of nexuses as in-

terpolators between center-vortex segments of di�erent character, and the role of nexus-vortex combinations in the

Georgi-Glashow model.
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