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We review the construction of the unitary supermultiplets of the N = 8 d = 5 anti-de Sitter
(AdS5) superalgebra SU(2; 2j4), which is the symmetry group of type IIB superstring theory on
AdS5 � S5, using the oscillator method.

I. INTRODUCTION

Recently a great deal of work has been done on AdS/CFT (anti-de Sitter/conformal �eld theory) dualities in various

dimensions. This activity was primarily started with the original conjecture of Maldacena [1], [2,3] about the relation

between the large N limits of certain conformal �eld theories in d dimensions to M-theory/string theory compacti�ed

to d + 1-dimensional AdS spacetimes. The prime example of AdS/CFT duality is the duality between the large N

limit of N = 4 SU (N ) super Yang-Mills theory in d = 4 and type IIB superstring theory on AdS5 � S5.

In this lecture we will review some results obtained in collaboration with M. G�unaydin and M. Zagermann [4], [5]

regarding the construction of the unitary supermultiplets of the N = 8 d = 5 anti-de Sitter (AdS5) superalgebra

SU (2; 2j4) , which is the symmetry group of type IIB superstring theory on AdS5 � S5, using the oscillator method.

Our results should be relevant for the understanding of the spectrum of type IIB string theory on AdS5 � S5 [6].

II. SHORT REVIEW OF THE OSCILLATOR METHOD

In [7] a general oscillator method was developed for constructing the unitary irreducible representations (UIR) of the

lowest (or highest) weight type of non-compact groups. The oscillator method yields the UIR's of lowest weight type

of a noncompact group over the Fock space of a set of bosonic oscillators. To achieve this one realizes the generators of

the noncompact group as bilinears of sets of bosonic oscillators transforming in a �nite dimensional representation of

its maximal compact subgroup. The minimal realization of these generators requires either one or two sets of bosonic

annihilation and creation operators transforming irreducibly under its maximal compact subgroup. These minimal

representations are fundamental in that all the other ones can be obtained from the minimal representations by a

simple tensoring procedure.

These fundamental representations are nothing but a generalization of the celebrated remarkable representations

of the AdS4 group SO(3; 2) discovered by Dirac [8] long time ago, which were later named singletons [9] (indicating

the fact that the remarkable representations of Dirac corresponding to the �elds living on the boundary of AdS4 are

singular when the Poincare limit is taken). In the language of the oscillator method, these singleton representations

require a single set of oscillators transforming in the fundamental representation of the maximal compact subgroup

of the covering group Sp(4; R) of SO(3; 2) [10], [13] (a fact that meshes nicely with the name singleton). In some

cases (as with the AdS5 group SU (2; 2)) the fundamental representations require two sets of oscillators, and they were

called doubletons in [12], [14]. The general oscillator construction of the lowest (or highest) weight representations

of non-compact supergroups (i.e. the case when the even subgroup is non-compact) was given in [11]. The oscillator

method was further developed and applied to the spectra of Kaluza-Klein supergravity theories in references [12], [13],

[14].
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A non-compact group G that admits unitary representations of the lowest weight type has a maximal compact

subgroup G0 of the form G0 = H � U (1) with respect to whose Lie algebra g0 one has a three grading of the Lie

algebra g of G,

g = g�1 � g0 � g+1 (1)

which simply means that the commutators of elements of grade k and l satisfy

[gk; gl] � gk+l: (2)

Here gk+l = 0 for jk + lj > 1.

For example, for SU (1; 1) this corresponds to the standard decomposition g = L+ � L0 � L� where

[L0; L�] = �L�; [L+; L�] = 2L0: (3)

The three grading is determined by the generator E of the U (1) factor of the maximal compact subgroup

[E; g+1] = g+1; [E; g�1] = �g�1; [E; g0] = 0: (4)

In most physical applications E turns out to be the energy operator. In such cases the unitary lowest weight

representations correspond to positive energy representations.

The bosonic annihilation and creation operators in terms of which one realizes the generators of G transform

typically in the fundamental and its conjugate representation of H. In the Fock space H of all the oscillators one

chooses a set of states j
i which transform irreducibly under H � U (1) and are annihilated by all the generators in

g�1. Then by acting on j
i with generators in g+1 one obtains an in�nite set of states

j
i; g+1j
i; g+1g+1j
i; ::: (5)

which form an UIR of the lowest weight (positive energy) type of G. The in�nite set of states thus obtained corresponds

to the decomposition of the UIR of G with respect to its maximal compact subgroup.

As we have already emphasized, whenever we can realize the generators of G in terms of a single set of bosonic

creation (and annihilation ) operators transforming in an irreducible representation (and its conjugate) of the compact

subgroup H then the corresponding UIRs will be called singleton representations and there exist two such represen-

tations for a given group G. For the AdS group in d = 4 the singleton representations correspond to scalar and spinor

�elds . In certain cases we need a minimum of two sets of bosonic creation and annihilation operators transform-

ing irreducibly under H to realize the generators of G. In such cases the corresponding UIRs are called doubleton

representations and there exist in�nitely many doubleton representations of G corresponding to �elds of di�erent

"spins".

Even though the Poincare limit of the singleton (or doubleton) representations is singular, the tensor product of

two singleton (or doubleton) representations decomposes into an in�nite set of "massless" irreducible representations

which do have a smooth Poincare limit [9], [10], [13]. Furthermore, tensoring more than two singletons or doubletons

representations leads to "massive" representations of AdS groups and supergroups.

The relation between Maldacena's conjecture and the dynamics of the singleton and doubleton �elds that live on

the boundary of AdS spacetimes was reviewed in [15], [16], [17].

III. THE SUPERALGEBRA SU(2; 2j4)

The centrally extended symmetry supergroup of type IIB superstring theory on AdS5 � S5 is the supergroup

SU (2; 2j4) with the even subgroup SU (2; 2)�SU (4)�U (1)Z , where SU (4) is the double cover of SO(6), the isometry

group of the �ve sphere [12]. The Abelian U (1)Z generator, which we will call Z, commutes with all the other
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generators and acts like a central charge. Therefore, SU (2; 2j4) is not a simple Lie superalgebra. By factoring out

this Abelian ideal one obtains a simple Lie superalgebra, denoted by PSU (2; 2j4), whose even subalgebra is simply

SU (2; 2) � SU (4). We consider below the centrally extended supergroup SU (2; 2j4) [4]. The representations of

PSU (2; 2j4) correspond simply to representations of SU (2; 2j4) with Z = 0. We should also note that both SU (2; 2j4)

and PSU (2; 2j4) admit an outer automorphism U (1)Y that can be identi�ed with the U (1) subgroup of the SU (1; 1)

symmetry of IIB supergravity in d = 10 [12]. SU (2; 2j4) can be interpreted as the N = 8 extended AdS superalgebra

in d = 5 or as the N = 4 extended conformal superalgebra in d = 4.

The algebra of N -extended conformal supersymmetry in d = 4 can be written in a covariant form as follows

(i; j = 1; : : : ;N ; a; b = 0; 1; 2; 3; 5; 6) [18]:

[�i;Mab] = �(Mab)�i; [��
i;Mab] = ���i�(Mab)

f�i;�jg = f��i; ��jg = 0; f�i; ��
jg = 2�ji�(M

ab)Mab � 4Bj
i

[Bj
i ;Mab] = 0; [Bj

i ; B
l
k] = �liB

j
k � �jkB

l
i

[�i; B
k
j ] = �ki �j �

1

4
�kj �i; [

��i; Bk
j ] = ��ij ��

k +
1

4
�kj
��i; (6)

where the (four component) conformal spinor � is de�ned in terms of the the chiral components of the Lorentz spinors

Q and S (the generators of Poincar�e and S type supersymmetry) as

� �

�
Q�
�S _�

�
: (7)

The Bj
i are the generators of the internal (R-)symmetry group U (N ) and the �(Mab) are 4 � 4 matrices generating

an irreducible representation of SU (2; 2) [4], [18].

The superalgebra SU (2; 2j4) has a three graded decomposition with respect to its compact subsuperalgebra

SU (2j2)� SU (2j2)� U (1)

g = L+ � L0 � L�; (8)

where

[L0; L�] � L�; [L+; L�] � L0; [L+; L+] = 0 = [L�; L�]: (9)

Here L0 represents the generators of SU (2j2) � SU (2j2)� U (1).

The Lie superalgebra SU (2; 2j4) can be realized in terms of bilinear combinations of bosonic and fermionic anni-

hilation and creation operators �A (�A = �A
y) and �M (�M = �M

y) which transform covariantly and contravariantly

under the two SU (2j2) subsupergroups of SU (2; 2j4) [4,10{12]

�A =

�
ai
�


�
; �A =

�
ai

�


�
(10)

and

�M =

�
br
�x

�
; �M =

�
br

�x

�
(11)

with i; j = 1; 2; 
; � = 1; 2; r; s = 1; 2; x; y = 1; 2 and

[ai; a
j] = �ji ; f�
 ; �

�g = ��
 (12)

[br; b
s] = �sr ; f�x; �

yg = �yx: (13)

Annihilation and creation operators are labelled by lower and upper indices, respectively. The generators of SU (2; 2j4)

are given in terms of the above superoscillators schematically as
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L� = ~�A � ~�M ; L0 = ~�A � ~�B � ~�M � ~�N ; L+ = ~�A � ~�M ; (14)

where the arrows over � and � again indicate that we are taking an arbitrary number P of \generations" of superoscil-

lators and the dot represents the summation over the internal index K = 1; :::; P , i.e ~�A � ~�M �
PP

K=1 �A(K)�M (K).

The even subgroup SU (2; 2)�SU (4)�U (1)Z is obviously generated by the di-bosonic and di-fermionic generators.

In particular, one recovers the SU (2; 2) generators in terms of the bosonic oscillators:

Lji = ~aj � ~ai �
1

2
�jiNa; Rr

s =
~br � ~bs �

1

2
�rsNb

E =
1

2
f~ai � ~ai +~br �~b

rg =
1

2
fNa + Nb + 2Pg

L�ir = ~ai �~br ; L+ri = ~br � ~ai (15)

satisfying

[L�ir; L
+sj ] = �srL

j
i + �jiR

s
r + �ji �

s
rE: (16)

Here, Na � ~ai � ~ai; Nb � ~br �~br are the bosonic number operators.

Similarly, the SU (4) generators in their SU (2)�SU (2)�U (1) basis are expressed in terms of the fermionic oscillators

� and �:

A�
 = ~�� � ~�
 �
1

2
��
N�; By

x = ~�y � ~�x �
1

2
�yxN�

C =
1

2
f�~�� � ~�� + ~�x � ~�

xg =
1

2
f�N� �N� + 2Pg

L�
x = ~�
 � ~�x; L+x
 = ~�x � ~�
 (17)

with the closure relation

[L�
x; L
+y� ] = ��yxA

�

 � ��
B

y
x + �yx�

�

C: (18)

Here N� = ~�� � ~�� and N� = ~�x � ~�x are the fermionic number operators.

Finally, the central charge-like U (1)Z generator Z is given by

Z =
1

2
fNa + N� �Nb �N�g: (19)

Analogously, the odd generators are given by products of bosonic and fermionic oscillators and satisfy the following

closure relations

f~ai � ~�x; ~�
y � ~ajg = �yxL

j
i � �jiB

y
x +

1

2
�yx�

j
i (E + C + Z)

f~�
 �~br;~b
s � ~��g = ��srA

�

 + ��
R

s
r +

1

2
�sr�

�

(E +C � Z)

f~ai � ~�
 ; ~�
� � ~ajg = ��
L

i
j + �ijA

�

 +

1

2
��
�

i
j(E � C + Z)

f~br � ~�x; ~�
y �~bsg = �yxR

r
s + �rsB

y
x +

1

2
�yx�

r
s(E �C � Z): (20)

The generator Y of the outer automorphism group U (1)Y is simply

Y = N� �N� : (21)
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IV. UNITARY SUPERMULTIPLETS OF SU(2; 2j4)

To construct a basis for a lowest weight UIR of SU (2; 2j4), one starts from a set of states, collectively denoted by

j
i, in the Fock space of the oscillators a, b, �, � that transforms irreducibly under SU (2j2) � SU (2j2) � U (1) and

that is annihilated by all the generators ~�A � ~�M � (~ai �~br � ~ai � ~�x � ~�
 � ~br � ~�
 � ~�x) of L�

~�A � ~�M j
i = 0: (22)

By acting on j
i repeatedly with L+, one then generates an in�nite set of states that form a UIR of SU (2; 2j4)

j
i; L+1j
i; L+1L+1j
i; ::: (23)

The irreducibility of the resulting representation of SU (2; 2j4) follows from the irreducibility of j
i under SU (2j2) �

SU (2j2)� U (1). Because of the property (22), j
i as a whole will be referred to as the \lowest weight vector (lwv)"

of the corresponding UIR of SU (2; 2j4).

In the restriction to the subspace involving purely bosonic oscillators, the above construction reduces to the sub-

algebra SU (2; 2) and its positive energy UIR's. Similarly, when restricted to the subspace involving purely fermionic

oscillators, one gets the compact internal symmetry group SU (4) (17), and the above construction yields the represen-

tations of SU (4) in its SU (2)� SU (2)� U (1) basis. Accordingly, a lowest weight UIR of SU (2; 2j4) decomposes into

a direct sum of �nitely many positive energy UIR's of SU (2; 2) transforming in certain representations of the internal

symmetry group SU (4). Thus each positive energy UIR of SU (2; 2j4) corresponds to a supermultiplet of �elds living

in AdS5 or on its boundary.

V. DOUBLETON SUPERMULTIPLETS OF SU(2; 2j4)

By choosing one pair of super oscillators (� and �) in the oscillator realization of SU (2; 2j4) (i.e. for P = 1),

one obtains the so-called doubleton supermultiplets. The doubleton supermultiplets contain only doubleton repre-

sentations of SU (2; 2), i.e. they are multiplets of �elds living on the boundary of AdS5 without a 5d Poincar�e limit.

Equivalently, they can be characterized as multiplets of massless �elds in 4d Minkowski space that form a UIR of the

N = 4 superconformal algebra SU (2; 2j4).

The supermultiplet de�ned by the lwv j
i = j0i of SU (2; 2j4) is the unique irreducible CPT self-conjugate doubleton

supermultiplet. It is also the supermultiplet of N = 4 supersymmetric Yang-Mills theory in d = 4 [12].

If we take the following lowest weight vectors

j
i = �Aj0i � aij0i � �
 j0i; j
i = �Aj0i � brj0i � �xj0i (24)

we get a supermultiplet of spin range 3=2 and its CPT conjugate supermultiplet, respectively [4,5].

These two doubleton supermultiplets of spin range 3/2 would occur in the N = 4 super Yang-Mills theory if there is

a well-de�ned conformal (i.e. massless) limit of the 1=4 BPS states described in ref [19]. These 1=4 BPS multiplets are

massive representations of the four dimensional N = 4 Poincar�e superalgebra with two central charges, one of them

saturating the BPS bound. As such, they are equivalent to massive representations of the N = 3 Poincar�e superalgebra

without central charges. The corresponding multiplet with the lowest spin content (see e.g. [20]) contains 14 scalars,

14 spin 1/2 fermions, six vectors and one spin 3/2 fermion, giving altogether 26 states. If a massless limit of such a

multiplet exists, it should decompose into two self-conjugate doubleton multiplets plus a doubleton supermultiplet of

spin 3/2 plus its CPT conjugate supermultiplet.

The lowest weight vectors of a generic doubleton supermultiplet of spin range 2 and its CPT-conjugate partner are

[4,5]

j
i = �A1�A2 :::�A2j j0i; j
i = �A1�A2 :::�A2j j0i: (25)
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VI. \MASSLESS" SUPERMULTIPLETS OF SU(2; 2j4)

The doubleton supermultiplets described in the last subsection are fundamental in the sense that all other lowest

weight UIR's of SU (2; 2j4) occur in the tensor product of two or more doubleton supermultiplets. Instead of trying

to identify these irreducible submultiplets in the (in general reducible, but not fully reducible) tensor products, one

simply increases the number P of oscillator generations so that the tensoring becomes implicit while the irreducibility

stays manifest.

The simplest class, corresponding to P = 2, contains the supermultiplets that are commonly referred to as \massless"

in the 5d AdS sense. We will therefore use this as a name for all supermultiplets that are obtained by taking P = 2

in the oscillator construction despite some problems with the notion of \mass" in AdS spacetimes [4].

We will now give a complete list of the allowed SU (2; 2j4) lowest weight vectors j
i for P = 2.

The condition L�j
i = 0 leaves the following possibilities:

� j
i = j0i. This lwv gives rise to the N = 8 graviton supermultiplet in AdS5 and occurs in the tensor product

of two CPT self-conjugate doubleton (i.e. N = 4 super Yang Mills) supermultiplets.

� j
i = �A1(1)�A2(1):::�A2j (1)j0i. The corresponding supermultiplets and also their conjugates resulting from

� j
i = �A1(1)�A2 (1):::�A2j(1)j0i have been listed in [4] (Tables 8 to 11). Increasing j leads to multiplets with

higher and higher spins and AdS energies. For j > 3=2 the spin range is always 4. None of these multiplets can

occur in the tensor product of two or more self-conjugate doubleton supermultiplets. They require the chiral

doubleton supermultiplets.

� j
i = �A1(1)�A2(1):::�A2jL (1)�B1(2)�B2 (2):::�B2jR (2)j0i. The corresponding supermultiplets have been listed in

[4] (Table 12). Again they involve spins and AdS energies that increase with jL and jR, maintaining a constant

spin range of 4 for jL; jR � 1.

In addition to these purely (super)symmetrized lwv's, one can also anti-(super)symmetrize pairs of superoscillators,

since P = 2. The requirement L�j
i = 0 then rules out the simultaneous appearance of �'s and �'s so that one is left

with

� j
i = �[A1(1)�B1 ](2):::�[An(1)�Bn](2)�C1(1) : : : �Ck(1)j0i

� j
i = �[A1 (1)�B1](2):::�[An(1)�Bn ](2)�C1(1) : : : �Ck(1)j0i .

The special case k = 0 then leads to the novel short multiplets listed in [5]. The simplest case is given by the following

lowest weight vectors

j
i = �[A1(1)�B1 ](2)j0i; j
i = �[A1(1)�B1 ](2)j0i (26)

describing a supermultiplet of spin range 2 and its CPT conjugate supermultiplet, respectively. Acting on j
i with

the supersymmetry generators ~ai � ~�x and ~br � ~�
 of L+ and collecting resulting SU (2; 2) � SU (4) lwv's (i.e. states

that are annihilated by ~ai �~br and ~�
 � ~�x), one arrives at the supermultiplet of spin range 2 . These supermultiplets

do not occur in the tensor product of two or more CPT self-conjugate doubleton supermultiplets, but they appear in

the tensor product of two doubleton supermultiplets of spin 3/2.

The general lwvs for j � 2 [5]

j
i = �[A1(1)�B1 ](2):::�[Aj (1)�Bj ](2)j0i; j
i = �[A1(1)�B1 ](2):::�[Aj (1)�Bj ](2)j0i (27)

lead to a supermultiplet with spin range 2 and its CPT conjugate partner. Obviously, the spin content of these multi-

plets is independent of j. Only the AdS energies (conformal dimensions) get shifted, when j is increased, which distin-

guishes these multiplets from their (super)symmetrized counterparts obtained from j
i = �A1(1)�A2 (1):::�A2j(1)j0i,

where the spins increase with j.
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VII. CONCLUSIONS

In this talk we have reviewed the unitary supermultiplets of the N = 8 d = 5 anti-de Sitter superalgebra SU (2; 2j4)

[4,5] and given a complete classi�cation of the doubleton supermultiplets of SU (2; 2j4). The doubleton supermultiplets

do not have a smooth Poincar�e limit in d = 5. They correspond to d = 4 superconformal �eld theories living on

the boundary of AdS5, where SU (2; 2j4) acts as the N = 4 extended superconformal algebra. The unique CPT self-

conjugate irreducible doubleton supermultiplet is simply the N = 4 super Yang-Mills multiplet in d = 4 [12]. However,

there are also chiral (i.e. non-CPT self-conjugate) doubleton supermultiplets with higher spins. The maximum spin

range of the general doubleton supermultiplet is 2. We have also reviewed the supermultiplets of SU (2; 2j4) that

can be obtained by tensoring two doubleton supermultiplets. This class of supermultiplets has a maximal spin range

of four and contains the multiplets that are commonly referred to as \massless" in the 5d AdS sense including the

\massless" N = 8 graviton supermultiplet in AdS5 with spin range two. Some of these supermultiplets were studied

recently [21] using the language of N = 4 conformal super�elds developed sometime ago [22]. We have pointed out

that there exist some novel short supermultiplets of SU (2; 2j4) that have spin range two and do not appear in the

Kaluza-Klein spectrum of IIB supergravity. These novel short supermultiplets do not occur in tensor products of

the N = 4 Yang-Mills supermultiplet with itself, but they can be obtained by tensoring higher spin chiral doubleton

supermultiplets. Both kinds of "massless" supermultiplets should be realized in the spectrum of type IIB string theory

on AdS5 � S5 [6].
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