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In the large-N limit of d = 4, N = 4 gauge theory, the dual AdS space becomes at. We identify
a gauge theory correlator whose large-N limit is the at space S-matrix.

The Maldacena dualities [1,2] relate string theory in various near-horizon geometries to gauge and other quantum

�eld theories. If correct, these give nonperturbative de�nitions of string theory in these backgrounds. For example,

one could in principle simulate the quantum �eld theory on a large enough computer, which is the criterion originally

set forth by Wilson [3] for a nonperturbative de�nition in the case of quantum �eld theory. Further, in the large-N

limit of each �eld theory the curvature and �eld strengths of the dual geometry vanish, and so it should be possible

to extract any property of the at spacetime string theory. In this note we pursue this idea, addressing the following

question: what quantity in large-N gauge theory corresponds to the at spacetime string S-matrix?

The description of the at-spacetime limit is highly nonuniversal and noncovariant: by taking di�erent quantum

�eld duals, di�erent kinematics, and di�erent processes one obtains very di�erent constructions of the S-matrix. We

present here only one such construction, from a limit of AdS5�S
5. It is to be hoped that some universal and covariant

description can be extracted from the large-N limit, and the kinematics of the present paper may be a useful step in

this direction. Other discussions of holomorphy and at spacetime appear in [4].

There have been many recent discussions of scattering processes in AdS spacetime [5{7]. The present work certainly

overlaps these, but we do not know of work that directly addresses the question discussed here. Incidentally, there

appear to be a belief (also nonuniversal) that the S-matrix cannot be extracted from anti-de Sitter space even in a

limit; we do not understand these arguments, but the explicit construction here may help to clarify the issues.

We consider D = 4 N = 4 SU(N) gauge theory on S3 with Minkowski time, which is dual to IIB string theory

on the whole of AdS5 � S5 [8]. One could also consider the space R3, but the dual geometry is incomplete and one

would have to arrange the kinematics carefully to avoid losing outgoing particles. The metric of AdS5 is

ds2 = R2

"
�(1 + r2)dt2 +

dr2

1 + r2
+ r2d
2

3

#

= R2

"
�(1 + r2)dt2 + dx � dx�

(x � dx)2

1 + r2

#
; (1)

where R4 = 4��02gsN and r2 = x � x. Points on the boundary S3 will be labelled by unit four-vectors e. Because the

metric contains a factor of R2, distances as measured by an inertial observer di�er by a factor of R from coordinate

distances; we will always refer to the former as `proper,' and similarly for momenta. We will always dimensionally

reduce on the S5 factor, producing an e�ective mass term in AdS5.

Consider �rst the case of particles that are massless in AdS5. The geodesic motion

x = e tan t ; pt = ! ; p =
!e

1 + r2
; (2)

begins at the boundary point �e at t = ��=2, reaches the origin at t = 0, and returns to the boundary point +e at

t = +�=2. A particle on a second geodesic, reected by e ! �e, will intersect the �rst at the origin. A scattering

process would have a proper center-of-mass energy-squared

s = �gtt(2pt)
2 = 4!2=R2 : (3)

If the particles scatter into n massless outgoing particles, the latter will still reach the boundary at t = +�=2 but

at general points of the asymptotic S3. Thus it is possible to probe the general massless scattering with sources on

the boundary at t = ��=2 and detectors on the boundary at t = +�=2. By holding the external proper momenta of

the process �xed as R ! 1, one obtains the at spacetime scattering amplitude. This corresponds to holding the
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detector angles �xed while, by eq. (3), ! / R. In terms of the underlying string parameters, we wish to obtain the

10-dimensional theory with given gs. This corresponds to N !1 with gs �xed. In summary,

N !1 ; gs, �
0, and s �xed , R = (4��02gsN)1=4 ; ! =

1

2
Rs1=2 : (4)

We now use this reasoning to give an LSZ-like prescription for the massless particle S-matrix. We will assume

initially that the particles propagate freely except for their interaction near the origin, and then discuss corrections.

There is one annoying complication. Thus far we have described the scattering classically, specifying both the positions

and momenta of the external particles. For ordinary at spacetime scattering one can put the external particles in

momentum eigenstates, because the scattering location is irrelevant. In the present case, in order to obtain de�nite

kinematics in the at limit, the scattering must occur in a known position due to the position-dependence of the

metric. Thus we must resort to wavepackets.

Since ! is large in the limit of interest a WKB approximation can be used. For simplicity we consider scalar

particles. The details are given in the appendix; we present here the results. There is a solution �!e to the free wave

equation, which follows the classical trajectory (2) with an uncertainty !�1=2 in x. To be precise, in the neighborhood

of the origin

�!e(t;x) � F!e(t;x)e
�i!(t�e�x) ; (5)

with F!e(t;x) a smooth envelope of width !�1=2 centered on the trajectory x = et. The coordinate width !�1=2

goes to zero at large N , so the width of the packet is small compared to the AdS radius, while the proper width R!

goes to in�nity. The overlap region of the packets is well-localized compared to the AdS scale, as desired, while the

uncertainty in the proper momentum is R�1!�1=2 and goes to zero. Thus the scattering of the packets approaches

the at space process. At r !1,

�!e(t;x) �
h
G�(t+ �=2; jx̂+ ej) +G+(t� �=2; jx̂� ej)

i
e�i!t : (6)

The two terms represent the beginning and ending of the trajectory on the boundary. The functions G� are of width

!�1=2 in both time and angle, and as discussed in the appendix are related in a simple way to F!e(t;x). Incidentally,

the solution �!e has no reected piece at t > �=2 or t < ��=2.

Consider now the current

j!e� = �̂@��!e � �!e@��̂ : (7)

Here the hat denotes the �eld operator in the e�ective bulk quantum �eld theory. Continuing to ignore interactions

away from the origin, this current is conserved. De�ne then

�!e =

Z
S

dAn�j!e� : (8)

Due to current conservation, we can take for an incoming particle either of the surfaces S1 and S2 shown in �gure 1,

each of which intersects the packet before the scattering region.
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FIG. 1. Surfaces S1 and S2 intersecting an incoming wavepacket.

For an outgoing particle there are corresponding surfaces after the scattering. The spacelike surface S1 is taken to

lie in the at region near the origin as N ! 1. The integral (8) then de�nes a at-space creation operator for an

incoming particle; with the envelope function F!e omitted this would give a covariantly normalized plane wave. For

the timelike region S2 at the boundary we can use the dictionary [5,6]

lim
r!1

r4�̂(t;x) = Ô(t; x̂) ; (9)

where Ô is the corresponding operator1 in the gauge theory on S3. We de�ne �̂ to have canonical normalization as a

�ve-dimensional �eld, so that the relation (9) de�nes an implicit normalization for Ô.

The integral on S2 can therefore be expressed as an operator in the gauge theory. The analysis can immediately

be extended to particles with masses of order the Kaluza{Klein scale R�1 (which are therefore massless in ten

dimensions).2 Classically these do not reach the boundary but do come very close, reaching r � !. They can still be

created by �̂ at the boundary but with an appropriate tunneling factor. In fact, the boundary behavior (6) acquires

a term

r��2 ; � = (M2R2 + 4)1=2 ; (10)

while the factor of r4 in the operator relation (9) becomes r2+� . The integral on S2, and the corresponding integral

for outgoing particles, are then

1We continue to ignore interactions, but in fact we believe that the relation (9) will hold at least perturbatively in the
interacting theory [9].
2S-matrices for particles with nonzero ten-dimensional masses cannot be studied in this way; note, however, that the IIB

string theory has no BPS particle states.
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�!e� = 2�

Z
dt d3x̂G�(t+ �=2; jx̂+ ej)e�i!tÔ(t; x̂)

�!e+ = 2�

Z
dt d3x̂G+(t� �=2; jx̂� ej)e�i!tÔ(t; x̂) : (11)

These express the bulk creation and annihilation operators in terms of the operators in the boundary gauge theory.

Incidentally, the solution �!e is nonnormalizable, while the wave operator �̂ couples to the normalizable modes that

appear in the quantization of the �eld in AdS space. For any mass the product of these behaves as r�4 at large r;

combined with r�1 from @r, r from nr, and r4 from the metric, the integrals de�ning �!e� are r-independent.

The at-space S-matrix is then

S(I; O) = lim
N!1

��1

*Y
i2I

�!iei�

Y
j2O

�!jej+

+
: (12)

Here I and O denote the sets of incoming and outgoing particles, The proper energy of each particle is !=R and the

proper momentum is !e=R. The expectation value is in the gauge theory on S3, with the operators (11). The factor

� accounts for the overlap of wavepackets,

� =

Z
dt d4x

Z
S5

d5x0
Y

i2I[O

F!iei
(t;x) i(x

0) : (13)

Here  i(x
0) is the normalized wavefunction on S5; for an SO(6) singlet the net contribution of the compact space is

(VS5)(2�n)=2. The proper momenta in the S5 direction are of order 1=R and so vanish in the limit: the scattering

process is restricted to a �ve-dimensional plane. To study processes with nonzero momenta in the S5 directions would

require the use of high representations of SO(6), scaling with N .

Consider now corrections to free propagation, as depicted in �gure 2.

FIG. 2. Interactions (dashed lines) correcting the free propagation of wavepackets.
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Of course, these same processes are present in at space, so they will change the S-matrix formula only to the extent

that interactions at distances of order the horizon size are important. The characteristic size of the scattering region

is set by the external momenta and so scales as !�1. Thus, the interaction corrections will only be dangerous if they

are IR divergent. In �ve dimensions even with massless particles amplitudes at generic momenta are IR convergent.3

This is a at-spacetime result but in general one expects that IR diverenges are exacerbated by positive curvature

and reduced by negative curvature [10]. This appears to be the case here as well, for example from examination of

the gauge boson propagator in ref. [11].

Ref. [6] discusses various more subtle ways in which the relation (9) may fail due to interactions. However, we

believe that our result for the S-matrix is robust. A local perturbation in the gauge theory is expected to correspond

to a local disturbance on the boundary of AdS space; this is fully consistent with interactions in the Euclidean

case [2], for example. This disturbance will propagate into the interior of AdS space as a particle or multiparticle

state; appropriate kinematics then produces the S-matrix. We have used local �elds (9) to derive the LSZ formula

and of course the theory in the bulk is not a local �eld theory. However, we have used the �eld relation only in a

very weak sense, essentially its vacuum to one-particle matrix element | there is no assumption that �eld theory, or

locality, holds in the interaction region. In particular, we see no obstacle to assuming that the LSZ expression holds

for arbitrarily large proper energies, of order the string scale, the Planck scale, or beyond. Note however that the

proper energy is held �xed as N !1.

It would be interesting to subject the S-matrix result (12) to various tests. However, many of its required properties,

such as SO(9; 1) invariance, will not be manifest but instead must be taken as predictions for the behavior of the

gauge theory. It may be possible to analyze the pole structure using the OPE in the gauge theory.

The �nal expression (12) in the gauge theory involves three energy{momentum scales: order 1 (in coordinate units)

from the separation of the sources and the curvature of S3, order ! � N1=4 from the incoming and outgoing waves,

and order !1=2 from the envelope function. One could also include a simpler object, in which the envelope functions

are omitted and so one integrates the sources and detectors over times and angles (perhaps with spherical harmonics).

This still gives the at spacetime S-matrix but now with some average over external momenta because the kinematics

of the scattering depends on its location, and also with the possible complication of multiple scattering from the

periodicity of motion in AdS spacetime. Thus, at-spacetime physics is obtained in the large-N limit of a two-scale

object, with momenta of order 1 and of order gsN
1=4. Further, the large momenta appear only in the time direction

of the gauge theory. Incidentally, there seems to be no simple distance{energy relation such as there is in one-scale

processes [1,12].

APPENDIX

To analyze wavepackets with ê = (1; 0; 0; 0) it is convenient to use coordinates (�;y) with y a three-vector, as

de�ned by

x = (tan �;y= cos �) : (A.1)

The classical trajectory of interest is simply

� = t ; y = 0 : (A.2)

In these coordinates the metric is

ds2 =
R2

cos2 �

"
�(1 + y2)dt2 + d�2 + dy � dy �

(y � dy)2

1 + y2

#
: (A.3)

3In lower dimensions one should in any case be considering not the S-matrix but an appropriate IR-�nite inclusive amplitude.
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The d'Alembertian is

R2r2 = �
cos2 �

1 + y2
@2t + cos5 �@�(cos

�3 �@�) + cos2 �(@y � @y + @y � y y � @y) : (A.4)

We seek a solution of the form

� = exp
h
i!f(t; �)� !y2g1(�)� !(t� �)

2g2(�) + h(�)
i
: (A.5)

We are interested in the case ! � 1 and so make an analysis of geometric optics (WKB) type. The �rst term in the

exponent is the rapidly varying phase. The second and third terms produce the envelope in space and time; it follows

that y and t� � are of order !�1=2.

Expanding r2� = 0 in powers of !, the term of order !2 is

!2[(@tf)
2 � (@�f)

2] = 0 (A.6)

with solution f = �� t. At order !,

! cos2 �
h
�!y2 � 2i!y2g01 � 2i!(t� �)2g02 + 2ih0 + 3i tan �� 6g1 + 4!y2g21

i
= 0 ; (A.7)

where the prime is a � derivative. Thus,

g01 =
i

2
� 2ig21 ;

g02 = 0 ;

h0 = �
3

2
tan �� 3ig1 : (A.8)

These are readily integrated. A simple particular solution, which we will use henceforth, is

g1 = g2 =
1

2
; h =

3

2
ln cos ��

3i�

2
: (A.9)

At the origin this solution is of the form (6) with

F!e(t;x) = exp

�
�
!

2

h
x2? + (t� e � x)2

i�
: (A.10)

Here x? is the part of x that is orthogonal to e.

Very near the boundary, r � !, the WKB approximation breaks down. Here we can match onto the large-r behavior

� = A(t; x̂)
e�i!t

r2
H2;1

2 (!=r) ; (A.11)

where the variation of A(t; x̂) is slow compared to the remaining factors. The superscripts 1; 2 on the Bessel function

refers to the behavior at t = ��=2. In the regime ! � r � 1 both the large-r and WKB expressions are valid and so

we can match, with the result

A(t; x̂) = �e�i�!=2(�!=2)1=2 exp

�
�
!

2

h
jx̂� ej2 + (t� �=2)2

i�
: (A.12)

The r � ! behavior of the Bessel function then gives the wavepacket on the boundary,

G�(�; �) = �ie
�i�!=2(2=!)3=2��1=2 exp

�
�
!

2
[�2 + �2]

�
: (A.13)

For scalars with masses of order the Kaluza{Klein scale R�1, the trajectory and WKB analysis are una�ected for

r less than !. The e�ect of the mass is then simply to change the order of the Bessel function to �, and the result for

the wavepacket is

G�(�; �) = e�i�(!+��1)=2(2=!)��1=2�(�)��1=2 exp

�
�
!

2
[�2 + �2]

�
: (A.14)
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