
In
ationary Cosmology

Ewan D. Stewart
NASA/Fermilab Astrophysics Group

I give an overview of in
ationary cosmology.

I. INFLATION IS NATURAL

There are many types of in
ation that are natural from the particle physics point of view.

Positive cosmological constant (de Sitter, 1917)

Just needs our vacuum to have positive energy. This type of in
ation never ends and so cannot be the origin

of our hot Big Bang universe.

Observations suggest this is just beginning now. Although a positive cosmological constant is natural, its

observed magnitude requires anthropically-selected �ne-tuning.

In
ation in the early universe (Gliner, 1969, [1])

Erast Gliner was the �rst to suggest that in
ation could be the origin of our hot Big Bang universe. This idea

can be realized in many ways.

False vacuum in
ation (Guth, 1980, [2])

Just needs a positive energy false vacuum. This type of in
ation has no clock to synchronize the end of in
ation

at spatially separated points and so cannot produce our 
at hot Big Bang universe.

However, this type of in
ation probably did happen in the unobservably distant past, solving any initial condition

problems in
ation might have.

Thermal in
ation (Lyth & EDS, 1995, [3])

Just needs a �nite temperature e�ective potential

V = V0 +
�
gT 2 �m2

� j�j2 + : : : ; m� V
1=4
0

(1)

In
ation occurs as the temperature drops through the range V
1=4
0

>� T >� m when � is held at � = 0. The

temperature acts as the clock that determines the end of in
ation. Not scale-invariant because T / 1=a.

Thermal in
ation is probably needed to solve themoduli (Polonyi) problem and has important implications

for baryogenesis [4] and dark matter [5].

Rolling scalar �eld in
ation

Just needs a potential

V = V0 �m2 j�j2 + : : : ; m � V
1=2
0

=MPl (2)

In
ation occurs as the scalar �eld rolls o� the maximum. The scalar �eld acts as the clock that determines the

end of in
ation. Not scale-invariant in general. (MPl = 2:4� 1018 GeV)

Oscillating or rotating in
ation? (Damour & Mukhanov, 1997, [6])

Needs a concave potential

dV

d j�j <
V

j�j (3)

In
ation occurs during the oscillation, or rotation, of the scalar �eld.
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Has been proposed as an alternative to thermal in
ation's solution of the moduli problem in the context of

gauge-mediated supersymmetry-breaking (Moroi, 1998; Asaka, Kawasaki & Yamaguchi, 1998; [7]).

However, oscillating in
ation is extremely unstable to the growth of inhomogeneities and decay. Rotating

in
ation is also generally unstable to the growth of inhomogeneities and the formation of Q-balls.

II. DENSITY PERTURBATIONS

(Starobinsky, 1982, [8])

The most interesting type of in
ation is that which is assumed to have produced the density perturbations which

are needed to form galaxies, make the patterns observed in the cosmic microwave background radiation, etc.

The density perturbations are generated when small-scale 
uctuations (for example vacuum 
uctuations) are mag-

ni�ed into large-scale perturbations in the quantities xi (the clocks of the previous section) that determine the number

of e-folds of expansion N(x). This then results in a perturbation in the number of e-folds of expansion �N which in

turn generates a curvature/density perturbation (Sasaki & EDS, 1995, [9])

Rc = �N =
X
i

@N

@xi
�xi (4)

Observations constrain the density perturbations to be approximately scale-invariant, corresponding to a spectral

index

n = 1� 0:2 (5)

The only scale-invariant type of in
ation is a special case of rolling scalar �eld in
ation called slow-roll in
ation.

III. SLOW-ROLL INFLATION

(Linde, 1982; Albrecht & Steinhardt, 1982; [10])

This type of in
ation is required to produce an approximately scale-invariant spectrum of density perturbations. It

is a special case of rolling scalar �eld in
ation, with the stronger condition

m� V
1=2
0

MPl

(6)

or, more generally

�
V 0

V

�2

� 1

M2

Pl

(7)

and ����V
00

V

����� 1

M2

Pl

(8)

In this case, assuming a single component in
aton, the spectral index of the density perturbations is given by

n ' 1 + 2
V 00M2

Pl

V
� 3

�
V 0MPl

V

�2

(9)
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IV. WHY SLOW-ROLL INFLATION IS DIFFICULT

(EDS, 1994, [11,12])

The conditions for slow-roll in
ation are

�
V 0

V

�2

� 1

M2

Pl

(10)

and ����V
00

V

����� 1

M2

Pl

(11)

The �rst suggests we should be near a maximum, or other extremum, of the potential. The second is clearly non-

trivial. For example, many models of in
ation are built ignoring gravitational strength interactions, and so are

implicitly setting MPl =1. Clearly one cannot achieve the second condition in this context.

If the in
ationary potential energy is dominated by a supergravity F -term then one can precisely quantify the

problem. In this case it is straightforward to show that

V 00

V
=

1

M2

Pl

+model dependent terms (12)

Thus to build a model of slow-roll in
ation one must be able to control the gravitational strength corrections.

V. ATTEMPTS AT ACHIEVING SLOW-ROLL INFLATION NATURALLY

One of the better early attempts to naturally achieve a 
at in
aton potential was Natural In
ation (Freese, Frieman

& Olinto, 1990, [13]). It used an approximate U(1) global symmetry to control the in
aton's mass V 00. However, one

can not use the U(1) global symmetry to enforce

����V
00

V

����� 1

M2

Pl

(13)

because V also vanishes in the limit where the symmetry is exact.

A. Special forms for the Kahler potential

(EDS, 1994, [11,12]; Gaillard, Murayama & Olive, 1995, [14])

Special forms for the Kahler potential, such as

K = � ln
�
T + �T � j�j2

�
(14)

combined with some other conditions can give 
at in
aton potentials. One has to have good control of the high energy

theory to use this method with con�dence though.
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B. D-term domination of the in
ationary potential energy

(EDS, 1994, [12])1

For example, consider the following simple globally supersymmetric model. Taking

D = �2 � j j2 + j�j2 ; W = �� � (15)

where � is a Fayet-Iliopoulos term, gives

V =
1

2
g2
�
�2 � j j2 + j�j2�2 + �2

�j�j2j j2 + j�j2j�j2 + j j2j�j2� (16)

The potential is miminised for � = 0 giving

V =
1

2
g2
�
�2 � j j2�2 + �2j�j2j j2 (17)

which is a hybrid in
ation potential (Linde, 1991, [16]). For

j�j > g�

�
(18)

the potential is minimised for  = 0 giving

V =
1

2
g2�4 (19)

Because the in
ationary potential energy is D-term dominated, there are no mandatory in
aton dependent super-

gravity corrections.

Super�cially this method is very attractive, one only needs a suitable Fayet-Iliopoulos term. However, that is

precisely the problem.

It would be natural to identify the Fayet-Iliopoulos term with that obtained in many string compacti�cations. In

weakly coupled string theory, such a Fayet-Iliopoulos term, and the gauge coupling, are inversely proportional to the

dilaton

�2 / g2 / 1

ReS
(20)

making the potential unstable against ReS ! 1. Furthermore, to obtain the correct amplitude for the density

perturbations one would require (Binetruy & Dvali, 1996, [17])

� � 7� 1015GeV (21)

To obtain this one would need to stabilise the dilaton at a value

ReS � 103 � 105 (22)

Further yet, one has to do this at large positive potential energy density and without the aid of F -term supersymmetry

breaking.

More generally, for example in M theory or other string theories, one could replace the dilaton by some other

modulus. However, the problem remains unchanged. One has to stabilise the modulus at a very large value, and

furthermore do this at large positive potential energy density and without the aid of F -term supersymmetry breaking.

An alternative might be to try generating the Fayet-Iliopoulos term in �eld theory, but unless one can do this

without F -term supersymmetry breaking one is just led back to the problem of stopping the in
aton getting too large

a mass from F -term supersymmetry breaking.

1For an earlier D-term model of in
ation with a di�erent motivation see (J. A. Casas and C. Munoz, 1988, [15]).
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C. Flattening the in
aton's potential with quantum corrections

(EDS, 1996, [18])

This idea works best in the context of gravity-mediated supersymmetry-breaking which I will henceforth assume.

It also requires a small gauge (or yukawa) coupling

� � 10�1 to 10�2 (23)

and a very low scale of supersymmetry breaking

F <� e�1=�M2

Pl (24)

This could be regarded as �ne-tuning were it not for the fact that experiments suggest that

�GUT � 0:04 (25)

and

F � 10�16M2

Pl
(26)

Here is how it works. (MPl = 1)

Any model of in
ation must have a positive potential energy

V = V0 > 0 (27)

We have in mind that this is at the scale of the moduli potential V
1=4
0

� 1010:5GeV � 10�8. This will induce soft

supersymmetry-breaking masses squared of order V0 �
�
102:5GeV

�2

V (�) = V0

h
1�A j�j2 + : : :

i
(28)

with jAj � 1. This is our classical potential. It does not give rise to slow-roll in
ation. In particular

����V
00

V

���� ' jAj � 1 (29)

Now �'s couplings to other �elds will renormalise �'s mass leading to an e�ective potential of the form

V (�) = V0

h
1� f(� ln j�j) j�j2 + : : :

i
(30)

where 0 < �� 1 is proportional to the gauge or Yukawa coupling.

For clarity, consider �rst the special case

V (�) = V0

h
1�A (1 + � ln j�j) j�j2 + : : :

i
(31)

De�ne

�� � exp

�
�1

�

�
(32)

and rewrite the potential as

V (�) = V0

�
1� �A ln

� j�j
��

�
j�j2 + : : :

�
(33)

Now
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1p
2

V 0

V0
= ��A

�
ln

� j�j
��

�
+

1

2

�
j�j+ : : : (34)

and

V 00

V0
= ��A

�
ln

� j�j
��

�
+

3

2

�
+ : : : (35)

Therefore the potential has an extremum at j�j = e�1=2�� which is a maximum if A > 0, which we henceforth assume.

The key point is that although jV 00=V j � 1 over most of the potential, the quantum corrections have 
attened the

potential in the vicinity of the maximum. Thus we automatically get slow-roll in
ation as � rolls o� the

maximum.

More generally, assuming f has a zero in the range V0 � j�j2 � 1, and de�ning

f� � f(� ln��) = f(�1) � 0 (36)

gives

V (�) = V0

�
1�

�
�f 0

�
ln

� j�j
��

�
+O

�
�2 ln2

j�j
��

��
j�j2

�
(37)

1p
2

V 0

V0
= �

�
�f 0

�
ln

� j�j
��

�
+
1

2
�f 0

�
+O

�
�2 ln2

j�j
��

��
j�j (38)

V 00

V0
= �

�
�f 0

�
ln

� j�j
��

�
+

3

2
�f 0

�
+O

�
�2 ln2

j�j
��

��
(39)

In particular, at the extremum

V 00

V
= ��f 0

�
+O ��2� (40)

The COBE observations require

V 3=2

V 0
=

V
1=2
0p

2 �f 0
�
j�j ln(j�j =��)

= 6� 10�4 (41)

i.e.

j�j = 1=60p
2 �f 0

�
ln(j�j =��)

� 105 � V 1=2
0

(42)

For V
1=2
0

� (1010:5GeV)2 � 10�16 this gives

j�j � 10�11 (43)

Now, the condition for slow-roll is

����� ln j�j��
����� 1 (44)

i.e.

j�j � �� = exp

�
�1

�

�
(45)

Therefore
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� ' 0:04 (46)

which is consistent with the GUT gauge coupling �GUT ' 0:04 deduced from the LEP data.

The spectral index is fairly close, but not very close, to one. It has the general form

n = 1� 2�f 0
�
+Bk�f

0

� (47)

= 1� 0:08f 0
�
+Bk0:04f

0

� for � = 0:04 (48)

which is to be compared with the observational constraint

n = 1� 0:2 (49)

[1] E. B. Gliner, Sov. Phys. - JETP 22, 378 (1966); E. B. Gliner, Sov. Phys. - Doklady 15, 559 (1970); E. B. Gliner and I. G.
Dymnikova, Sov. Astron. Lett. 1, 93 (1975).

[2] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[3] D. H. Lyth and E. D. Stewart, hep-ph/9502417, Phys. Rev. Lett. 75, 201 (1995); hep-ph/9510204, Phys. Rev. D 53, 1784

(1996).
[4] E. D. Stewart, M. Kawasaki, and T. Yanagida, hep-ph/9603324, Phys. Rev. D 54, 6032 (1996); A. de Gouvea, T. Moroi,

and H. Murayama, hep-ph/9701244, Phys. Rev. D 56, 1281 (1997).
[5] K. Choi, E. J. Chun, and J. E. Kim, hep-ph/9608222, Phys. Lett. B 403, 209 (1997); J. Hashiba, M. Kawasaki, and

T. Yanagida, hep-ph/9708226, Phys. Rev. Lett. 79, 4525 (1997); T. Asaka, J. Hashiba, M. Kawasaki, and T. Yanagida,
hep-ph/9711501, Phys. Rev. D 58, 083509 (1998); K. Choi, E. J. Chun, and H. B. Kim, hep-ph/9801280, Phys. Rev. D 58,
046003 (1998); T. Asaka, J. Hashiba, M. Kawasaki, and T. Yanagida, hep-ph/9802271, Phys. Rev. D 58, 023507 (1998).

[6] T. Damour and V. F. Mukhanov, gr-qc/9712061, Phys. Rev. Lett. 80, 3440 (1998).
[7] T. Moroi, hep-ph/9807265, Phys. Rev. D 58, 124008 (1998); T. Asaka, M. Kawasaki, and Masahide Yamaguchi, hep-

ph/9810334.
[8] A. D. Sakharov, Sov. Phys. - JETP 22, 241 (1966); A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).
[9] M. Sasaki and E. D. Stewart, astro-ph/9507001, Prog. Theor. Phys. 95, 71 (1996); T. T. Nakamura and E. D. Stewart,

astro-ph/9604103, Phys. Lett. B 381, 413 (1996).
[10] A. D. Linde, Phys. Lett. B 108, 389 (1982); A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
[11] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and D. Wands, astro-ph/9401011, Phys. Rev. D 49, 6410 (1994).
[12] E. D. Stewart, hep-ph/9405389, Phys. Rev. D 51, 6847 (1995).
[13] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett. 65, 3233 (1990).
[14] M. K. Gaillard, H. Murayama, and K. A. Olive, hep-ph/9504307, Phys. Lett. B 355, 71 (1995).
[15] J. A. Casas and C. Munoz, Phys. Lett. B 216, 37 (1989); J. A. Casas, J. M. Moreno, C. Munoz, and M. Quiros, Nucl.

Phys. B 328, 272 (1989).
[16] A. D. Linde, Phys. Lett. B 259, 38 (1991).
[17] P. Binetruy and G. Dvali, hep-ph/9606342, Phys. Lett. B 388, 241 (1996).
[18] E. D. Stewart, hep-ph/9606241, Phys. Lett. B 391, 34 (1997); E. D. Stewart, hep-ph/9703232, Phys. Rev. D 56, 2019

(1997).

7


